GaN单晶的HVPE生长与掺杂进展
Progress in GaN Single Crystals: HVPE Growth and Doping
通讯作者: 王守志, 研究员. E-mail:wangsz@sdu.edu.cn;张 雷, 副教授. E-mail:leizhang528@sdu.edu.cn
收稿日期: 2022-10-17 修回日期: 2022-11-20 网络出版日期: 2023-01-17
基金资助: |
|
Corresponding authors: WANG Shouzhi, professor. E-mail:wangsz@sdu.edu.cn;ZHANG Lei, associate professor. E-mail:leizhang528@sdu.edu.cn
Received: 2022-10-17 Revised: 2022-11-20 Online: 2023-01-17
Fund supported: |
|
作者简介 About authors
齐占国(1999-), 男, 博士研究生. E-mail: zhan_guo_2021@163.com
QI Zhanguo (1999-), male, PhD candidate. E-mail: zhan_guo_2021@163.com
相比于第一代和第二代半导体材料, 第三代半导体材料具有更高的击穿场强、电子饱和速率、热导率以及更宽的带隙, 更适用于制备高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。氮化镓(GaN)作为第三代半导体材料的代表之一, 是制作蓝绿激光、射频微波器件和电力电子器件的理想衬底材料, 在激光显示、5G通信、相控阵雷达、航空航天等领域具有广阔的应用前景。氢化物气相外延(Hydride vapor phase epitaxy, HVPE)方法因生长设备简单、生长条件温和和生长速度快而成为制备GaN晶体的主流方法。由于普遍使用石英反应器, HVPE法生长获得的非故意掺杂GaN不可避免地存在施主型杂质Si和O, 使其表现出n型半导体特性, 但载流子浓度高和导电率低限制了其在高频大功率器件中的应用。掺杂是改善半导体材料电学性能最普遍的方法, 通过掺杂不同掺杂剂可以获得不同类型的GaN单晶衬底, 提高其电化学特性, 从而满足市场应用的不同需求。本文介绍了GaN半导体晶体材料的基本结构和性质, 综述了近年来采用HVPE法生长高质量GaN晶体的主要研究进展; 对GaN的掺杂特性、掺杂剂类型、生长工艺以及掺杂原子对电学性能的影响进行了详细介绍。最后简述了HVPE法生长掺杂GaN单晶面临的挑战和机遇, 并展望了GaN单晶的未来发展前景。
关键词:
Compared with the first and second generation semiconductor materials, the third generation semiconductor materials exhibit higher breakdown field strength, higher saturated electron drift velocity, outstanding thermal conductivity, and wider band gap, suitable for manufacturing of electronic devices with high frequency, high power, radiation resistance, corrosion resistant properties, optoelectronic devices and light emitting devices. As one of the representatives of the third generation of semiconductor materials, gallium nitride (GaN) is an ideal substrate material for preparing blue-green laser, radio frequency (RF) microwave and power electronic devices. It has broad application prospects in laser display, 5G communication, phased array radar, aerospace, etc. Hydride vapor phase epitaxy (HVPE) method is the most promising method for growth of GaN crystals due to its simple growth equipment, mild growth conditions and fast growth rate. Due to the widely used quartz reactors, unintentionally doped GaN obtained by HVPE method inevitably has donor impurities (Si and O). Therefore, the grown GaN shows n-type electrical properties, high carrier concentration and low conductivity, which limits its application in high-frequency and high-power devices. Currently, doping is the most common method to improve the electrical performance of semiconductor materials, through which different types of GaN single crystal substrates can be obtained with different dopants to improve their electrochemical characteristics and meet the different needs of market applications. In this article, the basic structure and properties of GaN semiconductor crystal material are introduced, and the recent progress of the high quality GaN crystals grown by HVPE method is reviewed; and the doping characteristics, dopant types, growth process and the influence of doped atoms on the electrical properties of GaN are introduced. Finally, the challenges and opportunities faced by the HVPE method to grow doped GaN crystals are briefly described, and the future developments in several directions are prospected.
Keywords:
本文引用格式
齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷.
QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei.
Ⅲ族氮化物作为第三代半导体材料的代表, 在光电子和微电子等领域具有重大的应用前景, 与之相关的材料生长和器件研制受到了广泛关注, 并取得了长足进步。相比于第一代和第二代半导体材料, 以碳化硅(SiC)、氧化锌(ZnO)、氮化镓(GaN)和氮化铝(AlN)为主的第三代半导体材料具有更高的击穿电场、电子饱和速率、热导率以及更宽的带隙, 更适用于研发制造高频、大功率、抗辐射、耐腐蚀的电子器件、光电子器件和发光器件。
根据衬底材料的不同, GaN分为同质外延生长与异质外延生长。异质衬底外延生长GaN材料时, 由于异质衬底与新生长的GaN之间存在晶格常数与热膨胀失配, 异质外延会引起外延层产生强应力, 导致裂纹的出现。此外, 异质衬底的电学性质、结构特性都会影响外延材料结晶质量(表面形貌、缺陷密度、内应力), 比同质外延所获晶体的质量差(晶片曲率大、位错密度高)。同质外延能够弥补异质外延的不足, 生长获得高质量的晶体。由于GaN外延生长对衬底质量的依赖性强, 无法显著提高新生长晶体的质量, 因此制备大尺寸、高质量的GaN单晶仍然是目前的研究重点。
相较于氨热法、助溶剂法等方法, 氢化物气相外延(HVPE)法设备简单、制备成本低、生长速度快, 生长得到的GaN单晶尺寸大、均匀性好, 且光电性能易于控制, 因此HVPE成为国内外研究热点, 也是目前应用最为广泛也最有前景的GaN单晶商业生长方法。但由于HVPE使用石英反应器, 使GaN在外延生长过程中不可避免地会掺入施主型杂质Si和O, 而且GaN内部的部分本征缺陷也是施主型, 因此非故意掺杂GaN呈现出n型半导体特征。非故意掺杂GaN的本底载流子浓度高、电导率低、波动范围大, 限制了其进一步的研发应用。
为了弥补非故意掺杂GaN电学性质的不足, 更好地利用GaN的特性, 需要对其进行高纯度生长或掺杂处理。通过对其掺杂可以获得不同半导体特性的GaN材料, 提高其电化学特性, 拓展其应用领域[3]。本文系统综述了GaN晶体的HVPE生长与掺杂的原理与最新研究进展, 介绍了各种类型掺杂原子对GaN单晶生长的影响, 并展望了GaN晶体HVPE生长与掺杂的发展趋势。
1 GaN晶体
1.1 GaN晶体结构与缺陷
常温常压下GaN单晶为固态, 具有三种晶体结构, 分别为六方纤锌矿结构、立方闪锌矿结构以及岩盐矿结构。在室温常压下, 纤锌矿结构是热力学稳定结构, 属于P63mc空间群, 是GaN单晶最常见的晶体结构。在纤锌矿GaN结构中, 每个晶胞中存在六个Ga原子和六个N原子。在晶胞中每个Ga原子均被距离最近的四个N原子包围, 形成配位四面体; 同样地, 每个N原子也被距离最近的四个Ga原子包围形成四面体配位, 因此纤锌矿结构GaN也可以视为两套六方点阵套构而成, 热力学结构稳定(见图1(a))。
图1
由于六方结构的特殊对称性, 六方GaN晶系可采用三轴米勒指数(hkl)进行表示, 也可采用四轴的米勒-布拉维指数(hkil)表示, 其中i=-(h+k), 虽然两种表示方式效果相同, 但是相比米勒指数, 米勒-布拉维指数更普遍直观, 得到了广泛应用。
在GaN晶体中,纤锌矿结构的非中心对称性, 导致不同方向观察到的GaN晶体显示不同的面: 在c轴方向, 即[0001]方向所指的面为Ga面, [000¯1]方向所指的面是N面(性能存在明显差异, 相比于N面, Ga面更加稳定)。由于晶体结构的影响, 晶体的c轴([0001])方向具有极性。根据晶面与[0001]方向所成夹角的不同将GaN的晶面分为三类: 第一类是与[0001]基矢垂直的极性面, 也被称为c面、基面或(000m)面; 第二类是与[0001]基矢平行的非极性面, 实际上只存在两种非极性面, 即m面{10¯10}和a面{11¯20}; 第三类是与[0001]基矢夹角介于0°和90°之间的半极性面(见图1(b))。根据GaN样品的粉末X射线衍射结果可知, 只有有限的晶面真正包含原子, 潜在的半极性面有: {10¯10}, {10¯12}, {10¯13}, {10¯14}, {10¯15}, {11¯22}, {11¯24}, {20¯21}, {20¯23}, {30¯32}, {31¯30}, {21¯32}和{21¯33}; 目前以{10¯10}, {10¯13}, {10¯14}, {11¯22}, {20¯21}以及{31¯30}为代表的半极性面已被发现并研究[4⇓⇓-7]。
完美晶体中的原子严格按周期性规则排列, 但生长过程中产生的缺陷不仅破坏了晶体结构的完整性, 还会影响晶体的性质。因此研究晶体中缺陷的产生、相互作用以及对性能的影响对于提升GaN晶体的光电性能, 提升GaN基器件的效率和稳定性具有重要的意义。GaN晶体生长过程中缺陷的产生是不可避免的, 根据尺度和形貌的不同, 缺陷可分为四种[4]。(1)零维缺陷, 即点缺陷, 与单个原子的位置有关, 如空位(VGa、VN)、间隙原子(Ni、Gai、间隙杂质原子)、替代原子(NGa、GaN、替代杂质原子), 掺杂就是通过晶体中杂质原子形成点缺陷进而影响晶体的光电性质。不同的点缺陷作为施主、受主或等电子杂质发挥作用, GaN中常见的施主有Ga格点位置上的Si、Ge以及N格点位置的O、S、Se等; GaN中常见的受主有Ga格点位置上的Mg、Ca、Zn以及N格点位置的Fe、C、Si、Ge等。(2)一维缺陷, 也称线缺陷, 与某一个方向有关, 如位错。(3)二维缺陷, 也称面缺陷, 与某个晶面有关, 如晶界、晶面、堆垛层错。(4)三维缺陷, 也称体缺陷, 与体积相关, 如空洞、裂纹、凹坑[4]。
GaN的禁带宽度高达3.4 eV, 决定了GaN材料在近紫外与蓝绿光光电器件等方面具有得天独厚的优势。高电子迁移率和高饱和电子速率意味着GaN可以用于制作高速电子器件, 尤其是二维电子气中的高载流子迁移率使GaN基HEMT器件得到了广泛应用。而且相对Si和GaAs等第一、二代半导体材料而言, GaN较高的热导率与击穿场强使GaN基器件可以在严苛环境进行大功率工作, 应用前景更为广阔。
1.2 GaN的HVPE生长方法
GaN的结晶是一个具有相当挑战性的过程, 其在极高温下熔化(>2500 ℃), 均匀熔化所需的N2压力将高于6 GPa, 因此无法从熔融体中直接生长GaN。目前GaN的生长方法有HVPE法、助溶剂法、氨热法、高压溶液生长法(HNPS)以及化学气相沉积(CVD)等。相比于氨热法、助溶剂法等传统方法, HVPE法具有生长条件温和、生长设备要求低、生长速率快(高达每小时数百微米)、工艺可重复性高、容易掺杂等优点, 成为制备GaN应用最为广泛的方法, 也是最具有潜力的生长GaN晶体的方法。HVPE法的生长速度主要取决于反应器的几何形状、源气体流量以及生长温度。采用HVPE法可以快速生长出低位错密度的厚膜, 但很难精确控制膜厚, 并且反应气体HCl对设备有一定腐蚀性, 从而影响GaN材料纯度的进一步提高。
HVPE是基于气相的生长方法, 主要机理:在低温区(~850 ℃)金属Ga与HCl反应形成的GaCl作为Ga源和作为N源的NH3, 通过N2和H2的混合载气运送到高温区(~1040 ℃)的衬底表面, 在低于1个大气压下反应生成GaN, 反应公式如下所示(反应器结构如图2所示)。
图2
HVPE生长GaN有两种生长模式: 低温(Low temperature, LT)模式和高温(High temperature, HT)模式。在这两种模式下生长的薄膜因表面粗糙度、凹坑的密度和形状以及生长应力值不同而存在明显差别。HT模式下生长的薄膜表面光滑, 但生长应力高, 容易产生裂纹;LT模式下生长的薄膜表面粗糙, 具有高密度的V型凹坑, 但没有裂纹[9]。
目前制备GaN器件最常用的衬底有SiC、蓝宝石(Al2O3)、AlN等异质衬底材料, 但是异质衬底与GaN之间存在的晶格失配和热膨胀失配, 会对生长晶体的质量、性能产生不可避免的影响, 降低器件的使用寿命和可靠性。同质衬底能够减少应力和开裂, 提高晶体的质量。
生长工艺对晶体质量会产生较大影响。通过调整生长过程的温度、流量以及V/Ⅲ族元素比可以有效地提高GaN的晶体质量[10]。由于缺乏同质衬底, 异质外延仍是GaN晶体生长的主要选择, 因此解决异质外延过程中产生的失配应力尤为重要。严重的晶格失配和热失配会造成开裂, 难以完整获取大尺寸单晶。为了避免开裂, 以衬底预处理为主的辅助技术应运而生。对衬底进行蚀刻预处理[11]以及加入缓冲层[12-13]能够降低生长晶体内缺陷(位错)的密度, 提高GaN的晶体质量。采用多孔衬底是半导体生长技术中实现低位错密度的简单方法, 为晶格失配材料的异质外延生长提供了可靠的路径, 显著降低了异质外延过程中产生的应力, 提高了外延层的光学质量[14]。Liu等[15]通过将低温AlN缓冲层以及3D GaN中间层结合的方式, 利用激光剥离技术(Laser lift-off technique, LLO)成功在蓝宝石衬底上获得2英寸高晶体质量、无裂纹自支撑GaN薄膜。在LLO操作中, 激光辐射通过蓝宝石后被界面处的GaN吸收, GaN迅速分解成金属Ga和N2, 产生的N2膨胀将界面的两侧分离, 完成GaN分离[16]。激光扫描速度[17]、激光强度[18]、环境压力条件[19]等操作参数都会影响分离的GaN材料的质量, 需要对其精确调整。当激光发射后, GaN薄膜中的压缩应力主要来自于GaN薄膜与蓝宝石衬底之间的热失配。由界面GaN分解形成N2的蒸发压力和应力释放会造成开裂[20], 通过增加GaN厚度、减少压缩应力, 可以更容易地实现GaN的激光剥离[21]。
1.3 HVPE法生长GaN晶体进展
GaN的晶体生长进展稳步推进, 国外机构以波兰物理研究所, 日本的三菱、住友、SCIOCS, 美国的Kyma等公司的研发居于领先地位。我国在GaN半导体材料领域起步较晚, 但也有较多相关基础研究技术储备, 其中苏州纳维、中镓2英寸GaN晶体已实现量产, 山东大学、中国电子科技集团有限公司第四十六研究所等单位也取得了长足进步。
2018年日本Fujikura等[22]在新型晶体硬度控制技术的基础上, 通过HVPE成功制备了无大缺陷、2~6英寸GaN体晶体。位错密度是表征晶体质量的重要数据, Fujimoto等[23]使用SiO2六边形掩膜进行两步平滑面生长, 有效提高了GaN晶体的晶格曲率和晶体质量, 位错密度降低至6.8×105 cm-2。Yoshida团队[24]利用三维生长区消除c平面来抑制籽晶位错的传播, 成功获得位错密度为4×105 cm−2的2英寸GaN衬底, 通过两次生长三维生长区将位错密度进一步降低至104 cm−2。2020年, 日本三菱公司[25]通过HVPE法在氨热GaN籽晶上制备了低位错密度(1.4×103 cm-3)的GaN单晶衬底。Jae-Shim等[26]采用两步生长法来释放蓝宝石衬底与外延GaN层之间的热应力, 并通过LLO、三步抛光以及电感耦合等离子体反应离子刻蚀(ICP-RIE)获得了可用于高亮度发光二极管(HB-LED)的2英寸无弓形自支撑GaN晶片。
中镓半导体研发出位错密度在4×105~7×105 cm-2范围的2英寸GaN自支撑衬底产品, 并已经开始量产销售。他们制备的Si掺杂2英寸高导电率GaN自支撑衬底可用于制备蓝绿光激光器和垂直型GaN功率器件, C掺杂2英寸半绝缘GaN自支撑衬底可用于制备高性能微波射频器件[27]。
山东大学晶体材料国家重点实验室也进行了GaN单晶的生长和加工研究[28⇓⇓-31]。900 ℃以上GaN易发生分解, 容易形成多孔结构。通过高温退火法成功制备出2英寸多孔GaN衬底以及2英寸自支撑多孔GaN单晶薄膜[28], 详细研究了退火时间和退火温度对多孔GaN表面形貌、光学和电学性能的影响规律[29]。多孔结构使生长界面形成空隙, 有效阻断位错降低应力并实现与衬底分离, 他们首次在高温退火多孔衬底上生长, 得到了高质量自剥离的GaN单晶[30], 并详细研究了制备的多孔衬底上外延生长GaN的成核阶段生长行为[31]。近期本研究团队采用HVPE生长出2英寸GaN单晶, 厚度可达2.5 mm, 表面平滑无坑。攻克了2英寸单晶同质外延生长关键技术, GaN单晶(0002)面半峰宽为48 arcsec (1 arcsec=0.01592°), (10¯12)面半峰宽为67 arcsec, 位错密度(Dislocation density, DD)低至5×106 cm-2。加工得到的样片微观平整, 具有良好的晶体质量(图3), 具体研究结果后续会详细报道。
图3
图3
HVPE生长的GaN晶体照片及质量表征
Fig. 3
Photos and characterization of GaN crystals grown by HVPE
(a) 2-inch 2.5 mm thick GaN crystal; (b) (0002) surface high-resolution XRD pattern; (c) (10¯12) high-resolution XRD pattern; (d) Image of GaN wafers; (e) CL image (dislocation density ~5×106 cm-2); (f) AFM image (RMS<0.2 nm in the range of 10 μm×10 μm)
相比其他方法, HVPE生长GaN速度快、成本低、设备工艺简单, 在商业领域受到广泛关注。近几年在国家政策与市场行情的推动下, HVPE制备GaN的研究稳步推进, 成果突出, 具有较好的发展前景。
2 HVPE-GaN的掺杂与进展
电学性能是GaN单晶衬底的核心参数, 也是决定GaN单晶衬底能否实现广泛应用的关键。常规GaN晶体的电阻都普遍偏低, 限制了其在高频大功率器件的应用。掺杂是用来调控GaN晶片的电学特性的一种常用手段, 杂质和缺陷可以在禁带内产生能级, 从而影响宿主材料的物理和化学性质。不同的掺杂源对GaN晶体的影响不同, 产生不同的电学特性(n型、p型、半绝缘型), 应用在不同领域(表1)。
Type | Impurities | Dopant | Characteristic | Application | Ref. |
---|---|---|---|---|---|
n type | Si | SiCl2H2 | High carrier concentration; anti-surfactant effect | High power and high current optoelectronic devices (LED, LD) | |
Ge | GeCl4/Ge3N4 | Little effect on lattice structure and stress, causing no morphological deterioration, higher carriers concentration than that of Si-doped; creating cavities inside the sample | [3] | ||
p type | Mg | Mg(S) | Increased lattice constant and band gap width, high conductivity | Luminescent device | [32] |
Semi- insulating | Fe | Fe(S)/Cp2Fe | High resistivity (iron showing a parasitic effect, easy to diffuse) | High power/frequency devices, HEMT, photoconductive switch, detectors | [2] |
Mn | Mn(S) | ||||
C | CH4/C2H4/C5H12 |
2.1 n型GaN生长
GaN的早期制备主要为非故意掺杂, GaN内部本征缺陷(如N空位)的存在以及石英反应腔的使用而释放出的施主型杂质(Si和O), 使其表现出n型的电学特性。非故意掺杂GaN的Si和O属于浅施主杂质[33-34], 衬底载流子浓度在1016~1017 cm-3范围内, 在低载流子浓度样品中, Si浓度高于O浓度, 而在较高载流子浓度样品中, O浓度比Si浓度高, 电子浓度随着GaN厚度增加而降低[35], 电阻率波动范围比较大, 性能不稳定, 不适用于高功率(光电和电子)垂直器件, 需要进一步掺杂来满足器件制造的需求。通过掺杂获得的n型GaN衬底的载流子可以在整体器件中进行有效传输, 显著提高器件的功率和效率, 可用于制作高功率垂直器件。
掺杂Si和Ge是实现n型GaN最为常见的方式。在HVPE中, Si掺杂源的选择有很多。与MOVPE相同, 可以考虑硅烷等气体源, 但热稳定性较差, 到达衬底之前就会迅速分解, 不是Si掺杂的最优选择。可以使用固体Si作为掺杂源与HCl进行反应生成SiHCl3, 在高温下转变为SiCl2, 然后被运输到生长区, 但Si片反应后的形貌发生变化会影响对掺杂量的控制。Lipski[36]以Si-Ga溶液同时作为Si源和Ga源, 通过HVPE成功制备了Si掺杂GaN。SiH2Cl2具有更高的热稳定性, 目前普遍以SiH2Cl2作为掺杂源, 利用HVPE生长得到的GaN具有良好的晶体质量[37-38](设备结构示意图见图4(a))。Si原子是GaN中的浅施主, 可以提高GaN的费米能级, 因此, 较高的Si掺杂浓度可以提高欧姆接触性能。而且适当的Si掺杂不会影响HVPE-GaN晶体的高结构质量。但是Si杂质具有抗表面活性剂效应, 随着掺杂浓度升高, GaN表面会形成单原子层SiGaN3, 引入排斥性的电偶极矩, 阻碍GaN在表面的继续生长, 导致表面形貌恶化, 进而限制了Si浓度的进一步提高[39]。由于Si原子与线位错之间的相互作用, Si掺杂还会导致GaN材料中的位错在位错攀升过程中发生倾斜[40], 从而引入张应力并造成GaN翘曲、开裂等问题, 降低了临界层厚度[41]。Si掺杂引起的拉伸应变广泛存在于GaN、AlGaN和AlN中, 这与所使用的生长技术无关。位错密度越低, Si掺杂和载流子浓度对拉伸应力的影响就越小[42]。采用高质量籽晶作为衬底可以有效降低GaN材料的位错密度, 减少倾斜位错, 从而缓解Si掺杂GaN内部的张应力。Xia等[43]研究发现在相同的载流子浓度下, Si掺杂的高质量块体 GaN 的载流子迁移率优于具有较高位错密度的GaN衬底。用Si掺杂可以获得自由载流子浓度在c平面上非常均匀的高导电n型HVPE-GaN晶体[38], 图4(b, c)中载流子浓度仅在晶片边缘存在细小偏差。
图4
GeCl4是GaN生长中Ge掺杂源的主要选择, 生长设备结构示意图见图5(a)。 Iwinska等[47]发现在H2环境生长过程中, 在晶体生长表面形成Ge液滴(Ge的熔点低于950 ℃), 会阻碍晶体的生长, 从而导致晶体中形成凹坑, 凹坑密度随着Ge浓度的增加而增大, 当停止供应Ge前驱体时, 凹坑可能会横向过生长, 对相应性能产生影响[48], 以N2为载气在结晶过程中可以不受其干扰, 获得高质量的Ge掺杂GaN (自由载流子分布均匀无波动)[47](图5(b))。位错倾斜并不依赖于掺杂剂的种类, 与Si一样, Ge对于n型GaN的应力演变具有相同的影响, 也会在外延生长过程中形成引发拉伸应力的位错倾斜, 这主要是由Ga空位的增加引起[40]。Oshima团队[44]以GeCl4为掺杂源, 利用HVPE生长获得高质量GaN晶体, 表明HVPE是一种非常有发展前景的n型GaN制备方法。
图5
通过Si掺杂和Ge掺杂可以把GaN的载流子浓度提高到1018 cm-3以上, 满足高功率(光电和电子)垂直器件的需求; 通过对n型GaN的生长与研究, 有助于进一步开发与完善GaN性能, 其中降低位错密度来缓解生长过程中的应力对于n型GaN制备高可靠性、高性能电子光电器件至关重要, 对于GaN晶体应用具有重要推动作用。
2.2 p型GaN生长
p型GaN可以用于制备蓝绿光发光二极管、激光二极管等高效光电器件和优良的热电器件, 但是其制备比较困难, 起步晚, 制约了p型GaN基器件的发展与应用。高掺杂浓度p型GaN需要提高发光p-n结的载流子注入效率, 发光结构中的电流扩散, 以及欧姆接触参数以降低工作电压并容忍光源的高输出功率运行所需的更高的正向电流[49]。Mg掺杂进入GaN后和GaN晶体中残留的H原子形成Mg-H中性络合物, 引起空穴补偿, 导致Mg发生钝化, 丧失受主作用, 导致电阻升高[50]。直到1989年Amano等[51]利用低能电子束辐射(Low energy electron beam irradiation, LEEBI)外延处理掺杂Mg的GaN获得低电阻p型GaN样品才真正开启p型GaN的研究。迄今为止, Mg掺杂是获得p型GaN的唯一方法, Mg 掺杂后GaN的晶格常数和晶胞体积增大, 同时能带密度增加, GaN的价带顶向高能方向移动, 并进入费米能级以上, 导致GaN呈现p型导电, 且其电学性能与Mg掺杂剂量以及退火工艺密切相关[32,52]。
MgO的熔点约为2800 ℃, 蒸汽压与石英基本相同, 是HVPE体系中一种很有吸引力的Mg掺杂源。MgO通过与HCl反应生成MgCl被运送到衬底进行掺杂(反应器结构示意图见图6(a)), 近年来受到广泛关注, 开展了一系列相关研究。Ohnishi等[53]利用MgO作为掺杂源, 通过控制HCl流量调整Mg掺杂浓度[54], 实现Mg掺杂GaN的HVPE生长, 并研究了Mg浓度在8.0×1018~8.3×1019 cm−3范围的p型GaN层的电性能和结构缺陷[55]。当Mg掺杂浓度超过5×1019 cm-3时, 会导致自补偿, 并降低自由空穴浓度, 不利于获得高空穴浓度和低电阻率的p型GaN[55-56] (图6(b))。不同温度下的霍尔效应测量结果表明, 在重掺杂Mg的样品中形成了锥体反域(PID), PID中的Mg原子是非活性的, 不作为受体[57-58], 抑制了受体浓度增加, 而补偿供体浓度增加, 进而导致空穴浓度降低[55] (图6(c))。
图6
图6
Mg掺杂HVPE-GaN
Fig. 6
Mg-doped HVPE-Ga
(a) Schematic of the HVPE system for growth of Mg doped GaN using MgO[53]; (b) Hole concentration measured at room temperature as a function of Mg concentration[55]; (c) Compensating donor concentration (Nd) and acceptor concentration (Na) as a function of Mg concentration[55]
起步晚、工艺复杂、掺杂困难等因素导致p型GaN研究进展缓慢, 而且Mg的电离能较大(约为~180 meV), 限制了Mg掺杂的GaN中空穴载流子浓度, 对其电学性能产生影响。不过由于其独特的光电性能可用于发光器件的制作, p型GaN日益受到关注, HVPE法制备p型GaN的工艺研究相对缺乏, 对其生长方法和机制进行深入研究与完善将会进一步扩展GaN发光器件的应用。
2.3 半绝缘型GaN生长
高电子迁移率晶体管(High electron mobility transistor, HEMT)等器件必须在半绝缘GaN基底上进行制备, 以克服寄生电容引起的信号损失。HVPE生长半绝缘GaN有两种方法。大多数HVPE设备使用石英部件, 无意中加入了Si和O, 产生了n型电导率, 可以通过设计新型HVPE设备去除反应器中的石英以获得高纯度GaN晶体。另一种补偿无意的自由电子的方法为有意添加深能级掺杂剂, 一般是用深能级杂质(Fe、Mn、C)补偿背景浅施主(Si杂质和O杂质)来实现[59-60](相应半绝缘GaN晶片形貌见图7)。高浓度的浅施主需要更高浓度的补偿杂质, 这可能会降低材料的固有性质[61], 因此降低晶体中的本征供体杂质浓度也至关重要。
图7
图8
图8
Fe掺杂GaN
Fig. 8
Fe-doped GaN
(a) Resistivity as a function of reciprocal temperature for samples doped with Mn, C, and Fe[8]; (b) Formation energy versus Fermi level for FeGa, FeN and Fei in GaN in different charge states, under Ga-rich conditions[68]; (c) Carrier concentration and Hall mobility versus Fe concentration in GaN films co-doped with Si and Fe[70]; (d) Resistivity versus inverse temperature for samples doped with Fe at various Fe concentrations[63]; (e) Schematic diagram of the energy levels and carrier decay processes of Fe-doped GaN[71]; (f) Carrier trapping time for Fe-doped GaN bulk crystals[72]
在GaN中, 作为过渡金属(Transition metal, TM), Fe2+/3+电荷转换能级靠近带隙中间, 这种效应被重Fe掺杂利用可以实现半绝缘性能, 应用于电子和光电器件, 也是目前研究人员制备半绝缘GaN最常用的掺杂源[64]。
掺入Fe会使GaN晶体形成深受主中心[65], 激发的空穴补偿部分由于本征缺陷产生的电子[66], 降低GaN中的自由载流子(电子)浓度, 使室温下的电阻率提高到3.6×108 Ω·cm, 从而赋予材料高电阻特性(半绝缘性)。随着Fe元素掺入, GaN晶体中的电阻率逐步提升(见图8(d)), 且蓝宝石衬底上的GaN外延层内部残余应力的弛豫效应随Fe掺杂浓度增加越发显著[67]。掺铁GaN具有良好的热稳定性, 电阻率即使在1050 ℃的退火温度下也基本保持不变。但当Fe掺杂浓度过高时(≥1×1018 cm-3), 引入杂质可能会导致缺陷密度的增加, 晶体质量开始恶化[60]。与FeGa相比, FeN和间隙构型Fei上的Fe具有非常高的形成能(见图8(b)), Fe原子掺入GaN中通常占据GaN晶格中的Ga位置[68]。在高掺杂浓度中Fe2+和Fe3+同时存在, 而在较低浓度的掺杂材料中只存在Fe3+。由于Fe3+的离子半径小于Ga3+, 而且Fe-N键比Ga-N键短, Fe附近的Ga-N键长增加, 导致掺杂后晶胞参数a、b略有增大, c略有减小[69]。
HVPE中的Fe掺杂常用的源材料是二茂铁(Cp2Fe), 与起泡器一起使用可以将源材料加入到HVPE气体混合物中[74], 但是Cp2Fe会造成碳无意掺杂进入材料。Fe还可以以纯金属的形式在HVPE中作为掺杂剂(将HCl气体流过纯金属)。二者的本质都是通过与HCl反应形成FeCl2并被传送到衬底作为HVPE生长表面上的掺杂物质。
Fe掺杂GaN中的Fe浓度随生长速率的增大而减小, 当以Fe掺杂GaN为衬底进行非掺杂GaN的外延生长时, Fe元素可以通过固相扩散、表面偏析或气相扩散加入到外延生长的“非掺杂GaN”中, 从而影响器件的性能[70]。Fe在GaN掺杂中会产生寄生沉积, 限制样品掺杂浓度的进一步提升。如何克服这一问题, 提高Fe的掺杂浓度仍是研究重点。
C是另一种较好的半绝缘GaN掺杂剂, HVPE常以CH4、C2H4、C5H12等含C气体作为掺杂源。众所周知, 在GaN中的C杂质, 不仅作为供体, 而且作为受体(不同环境下CGa和CN的形成能与费米能级的关系见图9(a))。当C浓度低于1×1019 cm-3时, C原子在GaN晶体结构中占据N原子位置(CN)(见图9(b)), 表现为深层受体[76]; C掺杂浓度过量后, GaN中形成了大量的Ga位C(CGa)作为供体, 补偿CN, 从而降低深层受体的浓度[77-78]。CN在2.2 eV附近产生黄色发光带, 在2.9 eV附近产生蓝色发光带(CN跃迁发光过程见图9(c))[79-80]。C掺杂虽然会产生与掺杂浓度相关的缺陷[81](见图9(d)), 但不会对GaN晶体的应力和位错增值产生影响, 即使C杂质浓度超过1×1019 cm-3, GaN材料也能保持良好的晶体质量[8], 适度的碳掺杂甚至可能通过更强地降低边缘位错密度来提高晶体质量[82]。通过控制C前驱体的输入分压调控C掺杂浓度可以获得高达1010 Ω·cm的室温电阻率(图9(e, f))。此外, 有详细的光电离光谱学研究表明, C杂质与HEMT设备中的陷阱中心相关, 会导致设备的电流崩塌[83], CN作为一个深层受体补偿n型背景杂质, 抑制高电场下的泄漏电流, 从而提高击穿电压; 当掺杂浓度过高时, 深能级受体对n型背景杂质的补偿受到CGa-CN自补偿效应的抑制, 进而降低击穿电压[77,84]。
图9
图9
C掺杂GaN
Fig. 9
C-doped GaN
(a) Formation energy versus Fermi level for CGa and CN in GaN: Ga-rich conditions (left), and N-rich conditions (right)[79]; (b) CN impurity model in GaN[79]; (c) Optical transitions of CN in GaN[79]; (d) Defect density as a function of C concentration[81]; (e) Temperature-dependent resistivity for C doped GaN[82] ; (f) Concentrations of carbon, oxygen, and silicon in C-doped GaN layers versus the input mole fraction of pentane[82]
半绝缘GaN具有较高的暗态电阻和良好的光电特性、压电特性以及较强的耐辐射能力, 应用范围广泛, 发展势头较好。利用HVPE掺杂Fe、C等杂质来生长半绝缘GaN, 方法简单, 晶体质量高, 受到研究人员的广泛青睐, 具有较高的研究价值与商业价值。
3 结语与展望
随着Si材料的研究逐渐达到物理极限, GaN以其优异的性能而成为未来半导体行业的首选材料之一。GaN作为第三代宽禁带半导体材料, 具有耐腐蚀、高击穿电压、高电子迁移率以及高化学稳定性等优点, 是制备激光器(LD)、发光二极管(LED)、高电子迁移率晶体管(HEMT)、射频器件(RF)以及电力电子器件的理想衬底材料, 被广泛应用于光伏发电、激光显示、轨道交通、相控阵雷达和5G通信等生产生活以及国防安全领域。相比于其它的GaN制备方法, HVPE方法以其快速的生长速率、温和的生长条件以及低廉的生长成本, 吸引了广泛注意, 是目前研究重点之一。由于HVPE中石英腔的普遍使用, 非掺杂GaN中存在固有施主杂质(Si、O), 使其表现为n型导电性质, 往往引起寄生电压、电流泄漏等问题, 并且由于电阻率低、波动范围大的原因, 导致其不适合直接应用于实际器件的制造。制备过程中使用不同掺杂剂作为掺杂源, 可以获得不同类型的掺杂GaN, 改善其电学性能, 扩展应用范围(表1)。Si掺杂和Ge掺杂可以获得n型GaN, 把GaN的载流子浓度提高到1018 cm-3以上, 满足高功率(光电和电子)垂直器件的需求。 Mg掺杂获得的p型GaN具有独特的光电性能, 可用于制作发光器件。利用Fe、C等深受主杂质制备的高电阻半绝缘GaN具有用于制造横向导电器件的潜在能力, 如HEMT, 其制备工艺简单, 性能优异, 并提高了器件长期运行的可靠性, 具有十分广泛的应用前景, 成为研究重点。
目前GaN晶体HVPE生长存在着晶体生长普遍面临的问题, 即生长工艺的研究先于生长机理的研究。随着GaN生长技术的不断发展, 生长机制的研究缺乏也将限制晶体生长技术的进一步提升。为此, 生长工艺与机理的研究必须双管齐下, 要理论联系实际, 推动HVPE-GaN晶体完善与进步。对于GaN掺杂, 要进一步降低晶体材料本身的缺陷, 提升掺杂水平, 优化晶体性能。随着HVPE-GaN晶体生长与掺杂工艺的提升, 大尺寸、高质量、性能优良GaN晶体的制备, GaN基底材料必将会在高功率、高频通信等领域获得更加广泛的应用。
参考文献
Properties of GaN and related compounds studied by means of Raman scattering
,
Progress on GaN single crystal substrate grown by hydride vapor phase epitaxy
,氮化镓(GaN)晶体是制备蓝绿光激光器、射频微波器件以及电力电子等器件的理想衬底材料,在激光显示、5G通讯及智能电网等领域具有广阔的应用前景.目前市场上的氮化镓单晶衬底大部分都是通过氢化物气相外延(Hydride Vapor Phase Epitaxy,HVPE)方法生长制备的,在市场需求的推动下,近年来HVPE生长技术获得了快速的发展.本论文综述了近年来HVPE方法生长GaN单晶衬底的主要进展,主要内容包含HVPE生长GaN材料的基本原理、GaN单晶中的掺杂与光电性能调控、GaN单晶中的缺陷及其演变规律和GaN单晶衬底在器件中的应用.最后对HVPE生长方法的发展趋势进行了展望.
Growth and doping of bulk GaN by hydride vapor phase epitaxy
,Doping is essential in the growth of bulk GaN substrates, which could help control the electrical properties to meet the requirements of various types of GaN-based devices. The progresses in the growth of undoped, Si-doped, Ge-doped, Fe-doped, and highly pure GaN by hydride vapor phase epitaxy (HVPE) are reviewed in this article. The growth technology and precursors of each type of doping are introduced. Besides, the influence of doping on the optical and electrical properties of GaN are presented in detail. Furthermore, the problems caused by doping, as well as the methods to solve them are also discussed. At last, highly pure GaN is briefly introduced, which points out a new way to realize high-purity semi-insulating (HPSI) GaN.
InGaN/GaN blue laser diode grown on semipolar (30¯31) free-standing GaN substrates
,
Enhancement of n-type GaN (20¯21) semipolar surface morphology in photo-electrochemical undercut etching
,
Doping in bulk HVPE-GaN grown on native seeds-highly conductive and semi-insulating crystals
,
Two modes of HVPE growth of GaN and related macrodefects
,
Stress-engineered growth of homoepitaxial GaN crystals using hydride vapor phase epitaxy
,
Improvement of crystal quality HVPE grown GaN on an H3PO4 etched template
,
Thick GaN film stress-induced self-separation
,
Strain relaxation in GaN layers grown on porous GaN sublayers
,
Comparison study of GaN films grown on porous and planar GaN templates
,The GaN thick films have been grown on porous GaN template and planar metal-organic chemical vapor deposition (MOCVD)-GaN template by halide vapor phase epitaxy (HVPE). The analysis results indicated that the GaN films grown on porous and planar GaN templates under the same growth conditions have similar structural, optical, and electrical properties. But the porous GaN templates could significantly reduce the stress in the HVPE-GaN epilayer and enhance the photoluminescence (PL) intensity. The voids in the porous template were critical for the strain relaxation in the GaN films and the increase of the PL intensity. Thus, the porous GaN converted from β-Ga2O3 film as a novel promising template is suitable for the growth of stress-free GaN films.
Fabrication of 2-inch free- standing GaN substrate on sapphire with a combined buffer layer by HVPE
,Free-standing GaN substrates are urgently needed to fabricate high-power GaN-based devices. In this study, 2-inch free-standing GaN substrates with a thickness of ~250 μm were successfully fabricated on double-polished sapphire substrates, by taking advantage of a combined buffer layer using hydride vapor phase epitaxy (HVPE) and the laser lift-off technique. Such combined buffer layer intentionally introduced a thin AlN layer, using a mix of physical and chemical vapor deposition at a relatively low temperature, a 3-dimensional GaN interlayer grown under excess ambient H2, and a coalescent GaN layer. It was found that the cracks in the epitaxial GaN layer could be effectively suppressed due to the large size and orderly orientation of the AlN nucleus caused by pre-annealing treatment. With the addition of a 3D GaN interlayer, the crystal quality of the GaN epitaxial films was further improved. The 250-μm thick GaN film showed an improved crystalline quality. The full width at half-maximums for GaN (002) and GaN (102), respectively dropped from 245 and 412 to 123 and 151 arcsec, relative to those without the 3D GaN interlayer. The underlying mechanisms for the improvement of crystal quality were assessed. This method may provide a practical route for fabricating free-standing GaN substrates at low cost with HVPE.
High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates
,
The influences of laser scanning speed on the structural and optical properties of thin GaN films separated from sapphire substrates by excimer laser lift-off
,
Selective lift-off of GaN light-emitting diode from a sapphire substrate using 266-nm diode-pumped solid-state laser irradiation
,
Study of GaN light-emitting diodes fabricated by laser lift-off technique
,
Mechanics of laser-assisted debonding of films
,
Separation of thin GaN from sapphire by laser lift-off technique
,\n Laser lift-off of GaN from sapphire substrates has become a viable technique to increase the brightness of GaN-based light-emitting diodes (LEDs). The LEDs free from sapphire exhibit high luminous efficiency by placing highly reflective electrode on the back side. The devices serve low series resistance together with low thermal resistance taking advantages of the vertical structure. Thinner epitaxial structure is desired to serve better device performance, however, cracks in the film after the lift-off limits the minimum thickness. In this paper, successful laser lift-off of very thin GaN with the thickness down to 4 µm is described. The established laser lift-off system utilizes homogenized beam-profile of the employed neodymium-doped yttrium aluminium garnet (Nd:YAG) third harmonic laser in which optimization of the laser fluence minimizes the thickness of the decomposed GaN. It is also revealed by calculation that the compressive stress in the thin GaN is increased by reducing the thickness. It is demonstrated that the lattice of the GaN is relaxed after the laser lift-off, which is confirmed by photoluminescence (PL) and X-ray diffraction (XRD) measurements. In addition, reduction of the wafer bowing of GaN on sapphire is experimentally confirmed after the laser irradiation with the formation of metal Ga in between the interface. \n
Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2-6 in. GaN substrates by hydride vapor phase epitaxy with hardness control
,
Growth of GaN and improvement of lattice curvature using symmetric hexagonal SiO2 patterns in HVPE growth
,
GaN substrates having a low dislocation density and a small off-angle variation prepared by hydride vapor phase epitaxy and maskless-3D
,To produce high-quality GaN (0001) substrates with a low threading dislocation density (TDD) and a small off-angle variation, we have developed a technique named the “maskless-3D method.” This method, which is applied during GaN boule growth by hydride vapor phase epitaxy (HVPE), induces three-dimensional (3D) growth on a normal GaN (0001) seed substrate. We showed that by an appropriate choice of HVPE conditions, and without using a mask, the 3D growth shape was controlled to eliminate the c-plane and thereby suppress the propagation of dislocations from the seed. Subsequently, two-dimensional (2D) growth was carried out on the 3D structure. This 2D growth area was machined to produce a 2 inch GaN substrate with a TDD of about 4 × 105 cm−2 and an off-angle variation of 0.05°. We also confirmed that it was possible to insert the 3D growth area twice, thereby further reducing the TDD to 104 cm−2.
Recent progress of large size and low dislocation bulk GaN growth
,
A bow-free freestanding GaN wafer
,
中镓半导体: 低位错密度氮化镓自支撑衬底产品量产! 化合物半导体市场
(
Fabrication of a 2 inch free standing porous GaN crystal film and application in the growth of relaxed crack-free thick GaN
,This paper describes the fabrication of a 2 inch free standing porous GaN crystal film and the application in the growth of relaxed crack-free thick GaN.
From bulk to porous GaN crystal: precise structural control and its application in ultraviolet photodetectors
,
Epitaxial growth of a self- separated GaN crystal by using a novel high temperature annealing porous template
,
Nucleation mechanism of GaN crystal growth on porous GaN/sapphire substrates
,This paper describes the nucleation mechanism of GaN crystal growth on porous GaN/sapphire substrates. The growth behavior of epitaxially grown GaN on porous substrates is studied in detail for the first time at the nucleation stage.
First-principles study on the electronic structure and optical properties of GaN with Mg doped
,
Demonstration of the donor characteristics of Si and O defects in GaN using hybrid QM/MM
,
Background impurity reduction and iron doping of gallium nitride wafers
,
Si-doped GaN by Hydride-vapour-phase-epitaxy Using a Ga: Si-solution as Doping Source
,
N-type doping of HVPE-grown GaN using dichlorosilane
,
Homoepitaxial growth of HVPE-GaN doped with Si
,
Blocking growth by an electrically active subsurface layer: the effect of Si as an antisurfactant in the growth of GaN
,
On the strain in n-type GaN
,
High Si and Ge n-type doping of GaN doping-limits and impact on stress
,
Si doping of GaN in hydride vapor-phase epitaxy
,
HVPE growth of bulk GaN with high conductivity for vertical devices
,The electrical properties of gallium nitride (GaN) substrate are crucial to the performance of vertical power devices. Bulk GaN substrates with carrier concentrations in the range from 6.7 × 1017 to 1.7 × 1019 cm−3 are grown by hydride vapor phase epitaxy. All samples show no obvious tensile stress regardless of the carrier concentration. Moreover, the mobility of Si-doped high-quality bulk GaN is superior to the GaN template with higher dislocation density at the same carrier concentration. The influence of carrier concentration on the performance of ohmic contact on N-face of Si-doped GaN is also carefully studied by circular transfer length measurement and rapid thermal annealing methods. The specific contact resistivity decreases monotonically with increase of carrier concentration, while it increases with the annealing temperature. The N-face contact becomes non-ohmic when the annealing temperature exceeds the limit value, which increases with the carrier concentration. The sample with carrier concentration of 1.7 × 1019 cm−3 still showed ohmic behavior after annealing at 450 °C. These results are not only useful to improve the electrical properties of N-type bulk GaN substrate, but also provide a potential solution for improving the efficiency of vertical devices in the future.
Properties of Ge-doped, high-quality bulk GaN crystals fabricated by hydride vapor phase epitaxy
,
Ge as a surfactant in metal-organic vapor phase epitaxy growth of a-plane GaN exceeding carrier concentrations of 1020 cm-3
,
Doping properties of C, Si, and Ge impurities in GaN and AlN
,
Crystal growth of HVPE-GaN doped with germanium
,
Investigation of pits in Ge-doped GaN grown by HVPE
,
Electrical and optical properties of thick highly doped p-type GaN layers grown by HVPE
,
Hole compensation mechanism of p-type GaN films
,\n Low-resistivity p-type GaN films, which were obtained by N2-ambient thermal annealing or low-energy electron-beam irradiation (LEEBI) treatment, showed a resistivity as high as 1×106 Ω·cm after NH3-ambient thermal annealing at temperatures above 600°C. In the case of N2-ambient thermal annealing at temperatures between room temperature and 1000°C, the low-resistivity p-type GaN films showed no change in resistivity, which was almost constant between 2 Ω·cm and 8 Ω·cm. These results indicate that atomic hydrogen produced by NH3 dissociation at temperatures above 400°C is related to the hole compensation mechanism. A hydrogenation process whereby acceptor-H neutral complexes are formed in p-type GaN films was proposed. The formation of acceptor-H neutral complexes causes hole compensation, and deep-level and weak blue emissions in photoluminescence. \n
P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI)
,\n Distinct p-type conduction is realized with Mg-doped GaN by the low-energy electron-beam irradiation (LEEBI) treatment, and the properties of the GaN p-n junction LED are reported for the first time. It was found that the LEEBI treatment drastically lowers the resistivity and remarkably enhances the PL efficiency of MOVPE-grown Mg-doped GaN. The Hall effect measurement of this Mg-doped GaN treated with LEEBI at room temperature showed that the hole concentration is ∼2·1016cm-3, the hole mobility is ∼8 cm2/V·s and the resistivity is ∼35 Ω·cm. The p-n junction LED using Mg-doped GaN treated with LEEBI as the p-type material showed strong near-band-edge emission due to the hole injection from the p-layer to the n-layer at room temperature. \n
Electrical property and annealing characteristics of heavy Mg-doped GaN films
,
Halide vapor phase epitaxy of p-type Mg-doped GaN utilizing MgO
,
Thermodynamic analysis of the gas phase reaction of Mg-doped GaN growth by HVPE using MgO
,
Electrical properties and structural defects of p-type GaN layers grown by halide vapor phase epitaxy
,
Influence of microstructure on the carrier concentration of Mg-doped GaN films
,
Wide range doping control and defect characterization of GaN layers with various Mg concentrations
,
Hall-effect measurements of metalorganic vapor-phase epitaxy-grown p-type homoepitaxial GaN layers with various Mg concentrations
,
Highly resistive C-doped hydride vapor phase epitaxy-GaN grown on ammonothermally crystallized GaN seeds
,GaN crystals were grown by hydride vapor phase epitaxy (HVPE) and doped with C. The seeds were high-structural-quality ammonothermally crystallized GaN. The grown crystals were highly resistive at 296 K and of high structural quality. High-temperature Hall effect measurements revealed p-type conductivity and a deep acceptor level in the material with an activation energy of 1 eV. This is in good agreement with density functional theory calculations based on hybrid functionals as presented by the Van de Walle group. They obtained an ionization energy of 0.9 eV when C was substituted for N in GaN and acted as a deep acceptor.
Properties of Fe-doped semi-insulating GaN substrates for high-frequency device fabrication
,
Crystallization of semi-insulating HVPE-GaN with solid iron as a source of dopants
,
Iron and manganese as dopants used in the crystallization of highly resistive HVPE-GaN on native seeds
,
Characteristics of semi-insulating, Fe-doped GaN substrates
,
Infrared luminescence of residual iron deep level acceptors in gallium nitride (GaN) epitaxial layers
,
Subsurface Fe-doped semi-insulating GaN templates for inhibition of regrowth interface pollution in AlGaN/GaN HEMT structures
,
Effects of Fe doping on the strain and optical properties of GaN epilayers grown on sapphire substrates
,
Iron as a source of efficient Shockley-Read-Hall recombination in GaN
,
Growth and characteristics of Fe-doped GaN
,
Optical nonlinearities and carrier dynamics in Fe doped GaN single crystal
,
Effect of Fe-doping on nonlinear optical responses and carrier trapping dynamics in GaN single crystals
,
Carrier trapping in iron-doped GaInP
,
Fe-doping in hydride vapor-phase epitaxy for semi-insulating gallium nitride
,
Efficient iron doping of HVPE GaN
,
Incorporation of carbon in free-standing HVPE-grown GaN substrates
,Carbon doping is a viable approach for compensating the unintentional donors in GaN and achieving semi-insulating substrates necessary for high-frequency, high-power devices. In this work, bulk material properties and point defects are studied in mm-thick free-standing carbon-doped GaN to understand the efficacy of the carbon dopant. Temperature-dependent Hall measurements reveal high resistivity and low carrier concentrations at temperatures as high as 560 degrees C in a 6x10(17)cm(-3) C-doped sample, and electron paramagnetic resonance (EPR) indicates that carbon acts as the compensating defect. Photoluminescence, in agreement with photo-EPR, suggests that the compensating center is C-N; however, additional defects, which possibly limit compensation, are formed at carbon concentrations greater than 5x10(17)cm(-3).
Investigation of breakdown properties in the carbon doped GaN by photoluminescence analysis
,
Self-compensation of carbon in HVPE-GaN:C
,
Carbon impurities and the yellow luminescence in GaN
,
Two charge states of the CN acceptor in GaN: evidence from photoluminescence
,
Charge transfer process for carbon-related center in semi-insulating carbon-doped GaN
,
Growth and properties of intentionally carbon-doped GaN layers
,
Current collapse and the role of carbon in AlGaN/GaN high electron mobility transistors grown by metalorganic vapor-phase epitaxy
,
Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy
,
/
〈 | 〉 |