无机材料学报, 2023, 38(9): 1017-1030 DOI: 10.15541/jim20230016

综述

低维卤化物钙钛矿直接型X射线探测器研究进展

董思吟,1, 帖舒婕1, 袁瑞涵1,2, 郑霄家,1,2

1.中国工程物理研究院 化工材料研究所, 绵阳 621900

2.四川省新材料研究中心, 成都 610200

Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors

DONG Siyin,1, TIE Shujie1, YUAN Ruihan1,2, ZHENG Xiaojia,1,2

1. Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China

2. Sichuan Research Center of New Materials, Chengdu 610200, China

通讯作者: 郑霄家, 副研究员. E-mail:xiaojia@caep.cn

收稿日期: 2023-01-10   修回日期: 2023-03-27   网络出版日期: 2023-04-11

基金资助: 四川省科技创新人才(2022JDRC0021)
国家自然科学基金(NSFC62004182)

Corresponding authors: ZHENG Xiaojia, associate professor. E-mail:xiaojia@caep.cn

Received: 2023-01-10   Revised: 2023-03-27   Online: 2023-04-11

Fund supported: Sichuan Science and Technology Program(2022JDRC0021)
National Natural Science Foundation of China(NSFC62004182)

摘要

X射线探测在医学影像、安检、工业无损探测等领域应用广泛。卤化物钙钛矿X射线探测器因具有灵敏度高、检测下限低等显著优点而引人瞩目, 然而三维结构的钙钛矿内部离子迁移显著, 导致其稳定性较差。研究表明, 低维结构可以有效抑制钙钛矿中的离子迁移, 进而提高钙钛矿X射线探测器的稳定性。本文围绕X射线探测器的工作原理、关键性能参数、低维钙钛矿材料及器件等方面, 详细介绍了低维钙钛矿X射线探测器近期的研究进展,系统分析了低维钙钛矿材料的结构特性及其对X射线探测性能的影响。低维钙钛矿可实现兼具高灵敏度和高稳定性X射线探测器的制备, 是发展潜力巨大的候选材料。进一步优化材料体系, 设计器件结构, 制备大面积、像素化的成像器件, 深入研究探测器的工作机制等是促进低维钙钛矿X射线探测器走向应用的关键。

关键词: 低维材料; 钙钛矿; X射线探测; 综述

Abstract

X-ray detection has been widely used in medical imaging, security inspection, and industrial non-destructive tests. Halide perovskite X-ray detectors have attracted increasing attention due to their high sensitivity and low detection limit, but the notorious ion migration leads to poor operational stability. It is reported that the low dimensional structure can effectively suppress the ion migration of perovskites, thus greatly improving the stability of the detectors. This review introduces the working mechanism, key performance parameters of perovskite X-ray detectors, and summarizes the recent progress of low-dimensional perovskite materials and their application in direct X-ray detectors. The relationship between the structural characteristics of low-dimensional perovskite materials and their X-ray detection performance was systematically analyzed. Low-dimensional perovskite is a promising candidate for the preparation of X-ray detectors with both high sensitivity and stability. Further optimization of detection material and device structure, preparation of large-area pixelated imaging devices, and study of working mechanism in-depth of the detector are expected to promote the practical application of perovskite X-ray detectors.

Keywords: low-dimensional materials; perovskite; X-ray detection; review

PDF (11306KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

董思吟, 帖舒婕, 袁瑞涵, 郑霄家. 低维卤化物钙钛矿直接型X射线探测器研究进展. 无机材料学报, 2023, 38(9): 1017-1030 DOI:10.15541/jim20230016

DONG Siyin, TIE Shujie, YUAN Ruihan, ZHENG Xiaojia. Research Progress on Low-dimensional Halide Perovskite Direct X-ray Detectors. Journal of Inorganic Materials, 2023, 38(9): 1017-1030 DOI:10.15541/jim20230016

X射线探测器可以将高能X光子转换为紫外/可见光或电荷, 是实现X射线在医疗诊断、计算机断层扫描、无损检测和安防检查等领域应用的关键组成部分[1-2]。由于高性能探测材料匮乏, 目前X射线检测设备灵敏度较低, 使用的X射线剂量大, 不利于物质高分辨成像, 且存在较大安全隐患[3]。我国X射线探测材料及技术发展相对落后, 高灵敏度X射线探测技术2018年被《科技日报》列为35项中国亟待攻克的“卡脖子”技术之一。因此, 研发先进的探测材料及技术对于打破探测器领域自身的技术限制及国外技术封锁均具有十分重要的意义。

X射线探测器分为直接型和间接型两种。相比于间接型, 直接型探测器的像素串扰问题较少, 理论空间分辨率更高[4]。非晶硒(a-Se)[5], 碲锌镉(CZT)[6]等是直接型X射线探测器的典型代表。目前, a-Se与薄膜晶体管(TFT)阵列结合, 实现了大面积二维X射线成像。然而, a-Se对X射线的吸收能力差, 载流子迁移率低, 以及易晶化导致工作稳定性差, 极大地限制了其应用范围。CZT的基本性质十分契合X射线探测的需求, 然而大尺寸、高质量的CZT制备困难, 只有少数几个国家和地区掌握相关技术。CZT单晶的高温(>1000 ℃)制备工艺限制了其在商业TFT基板直接沉积的可能性。其他常见的直接型X射线探测材料, 如硅[7]、锗[8]、碘化汞[9]等, 存在X射线吸收能力和稳定性差等问题, 应用也受到极大限制。

近年来, 卤化物钙钛矿由于光电性质优异、带隙可调、制备简单、成本低等优点, 在材料科学、光电子领域引起了广泛关注[10]。钙钛矿的高原子序数(Z)和高载流子迁移率使其适用于X射线检测。与传统的a-Se、CZT相比, 钙钛矿材料的主要优势如下: (1)缺陷容忍度高, 载流子迁移率高和载流子寿命长;(2)组分和结构可调, 为材料性质调变提供了丰富的操作平台;(3)制备方法简单多样, 包括刮刀涂布[11]、旋涂[12]、喷涂[13]、热压[14]、模板辅助生长法[15]以及数字喷墨打印[16]等。

根据八面体结构基元在不同方向上的连接方式, 钙钛矿被分为三维(3D)、2D、1D和0D结构[17]。自2015年Yakunin等首次报道了基于3D MAPbI3多晶膜的X射线探测器之后, 钙钛矿X射线探测器取得了引人瞩目的进展, 灵敏度>104 µC·Gyair−1·cm−2, 远优于商业化a-Se探测器[18-21]。然而, 3D钙钛矿存在较严重的离子迁移, 导致噪声大和基线漂移严重等问题, 不利于获取低检测下限及高稳定性器件[22]。2021年, Liu等[23]发现具有复合A位阳离子的3D钙钛矿单晶可以在一定程度上抑制离子迁移。如何进一步抑制钙钛矿离子迁移是获得高稳定性X射线探测器的关键。研究发现, 低维(2D、1D、0D)钙钛矿材料在微观结构上可以隔断离子迁移通道, 进而更好地抑制离子迁移[24]。例如, MA3Bi2I9、Cs3Bi2I9、(NH4)3Bi2I9、Ruddlesden-Popper(RP)钙钛矿等低维材料的离子迁移激活能(Ea)较大[24-29]。此外, 低维钙钛矿X射线探测器也已实现>5000 µC·Gyair−1·cm−2的灵敏度以及<10 nGyair−1·s−1的检测下限, 在弱X射线信号探测方面具有独特优势, 有望大幅减少检测过程中X射线的使用剂量。此外, 低维结构钙钛矿的湿度、温度稳定性远优于3D钙钛矿, 为制备高稳定、高性能的X射线探测器提供了很好的材料基础[30-32]

低维钙钛矿X射线探测器取得了引人瞩目的研究进展, 本文在回顾、分析低维钙钛矿X射线探测器研究进展的基础上, 总结了当前面临的难点及痛点问题, 希望为推进钙钛矿X射线探测器尽快走向实用化提供一些启发。

1 X射线探测器的工作原理

X射线探测器的工作基于X射线的高穿透能力,由于被检测物体的各个组分对X射线的吸收能力有所差异, 因此其透过物体后到达探测器表面的X射线剂量不同, 进而获得不同强弱的输出信号, 产生图像明暗对比度。图1(a, b)展示了间接型和直接型X射线探测的工作原理[33-35]。闪烁体作为间接型X射线探测器的核心部件, 吸收X射线后, 电子激发到高能态, 在退激发过程中产生紫外或可见光, 再由后端连接的阵列光电探测器收集并将光信号转变为电信号。间接探测器经历X射线到光信号再到电信号两个过程。而直接型X射线探测器吸收X射线后, 内部电离产生电子-空穴对, 在外加电场的作用下, 载流子定向漂移, 最后被电极收集, 产生电信号, 实现了X射线到电信号的直接转变。

图1

图1   (a)间接型和(b)直接型X射线探测的原理示意图[33-35]

Fig. 1   Schematic diagram of (a) indirect and (b) direct X-ray detection[33-35]


间接型X射线探测器将射线转换为可见光收集时, 会产生光学折射或散射, 导致信号串扰, 从而影响图像的空间分辨率[36]。同时, 闪烁体在检测高能X射线时需要较大厚度, 存在局限性: (1)具有严重的自吸收或再吸收, 导致转换效率低; (2)光散射现象严重, 显著影响成像分辨率。直接型X射线探测器信号串扰小, 理论转换效率高, 有利于获得更清晰的成像效果。

2 直接型探测器的主要性能参数

2.1 暗电流

暗电流是探测器在没有X射线照射时, 载流子定向流过探测器产生的电流, 是器件噪声的重要来源之一。较大的暗电流会淹没部分X射线产生的电信号, 从而降低探测器的弱信号检测能力。通常, 医学成像探测器的暗电流密度应低于10−10 A·cm−2[37], 钙钛矿X射线探测器难以满足要求, 原因如下: (1)较高的本征载流子浓度。由于自掺杂(缺陷和杂质), 钙钛矿的本征载流子浓度较高, 导致其电阻率低 (例如, MAPbI3:~107 Ω·cm)[21,38]。(2)离子化合物属性。钙钛矿易发生离子迁移, 例如MAPbI3Ea约为0.19 eV[24], 离子电导会进一步增大暗电流并导致基线漂移。(3)界面能量势垒较低。载流子容易从电极注入钙钛矿, 也是导致暗电流高的原因。

2.2 灵敏度

灵敏度(S)代表X射线探测器将X射线光子转换为电信号的能力。探测器的灵敏度高表明在同等剂量条件下可获得更大的电学信号, 有利于图像的采集。S的计算公式为:

$S=\frac{{{I}_{\text{R}}}}{D\times A}$

其中, D是剂量率(μGyair·s−1), A是有效面积(cm2), IR为X射线照射下的信号电流强度(A)。

直接型X射线探测器的灵敏度受探测材料对X射线的衰减能力、电子-空穴对的产生效率、载流子收集效率和光导增益等的影响。物质对X射线的衰减系数aρZ4/E3, 与平均原子序数(Z)、质量密度(ρ)、辐射能量(E)有关[39]。载流子收集效率主要受载流子迁移率寿命积(µτ)影响。μτ可通过修正的Hecht方程拟合光电导曲线来导出, Hecht方程如下:

$I=\frac{{{I}_{0}}\mu \tau V}{{{L}^{2}}}\frac{1-\text{exp}\left(-\frac{{{L}^{2}}}{\mu \tau V} \right)}{1+\frac{Ls}{V\mu }}$

其中, I0为饱和光电流(A), L为厚度(cm), V为外加偏压(V), s为表面复合速率(cm·s−1)[40]

2.3 检测下限

检测下限(LoD)是另一个评价X射线探测器性能的重要参数, 直接决定了图像采集所需的最低剂量率。根据国际纯粹与应用化学联合会(IUPAC)的定义, 信噪比SNR=3对应的剂量率为探测器的检测下限。SNR根据以下公式计算: SNR=Js/Jn, 其中Js是信号电流密度, 即平均光电流密度(Jp)和暗电流密度(Jd)之间的差值, Jn是噪声电流密度, 由光电流密度的标准偏差计算得出:

${{J}_{\text{n}}}=\sqrt{\frac{1}{N}\underset{i}{\overset{N}{\mathop \sum }}\,{{({{J}_{i}}-{{J}_{\text{p}}})}^{2}}}$

理想的X射线探测器应同时满足高灵敏度和低噪声信号的要求。

2.4 响应速度

理想的探测器应具有较短的响应时间, 从而有效缩短X射线的暴露时间, 实现探测器的动态实时成像。响应速度取决于探测器中的载流子传输和收集过程, 与载流子迁移率及寿命、钙钛矿厚度、电场强度等有关。响应速度通常由探测器的上升时间(tr)和下降时间(tf)定义, 分别对应于X射线开关时电流从饱和光电流的10%上升到90%以及从90%下降到10%所需的时间。目前, 文献报道的钙钛矿X射线探测器的响应时间从毫秒到亚秒, 限制了其在高帧率X射线图像采集中的应用[35]

2.5 噪声电流

噪声电流(inoise)会显著影响X射线探测器的检测下限, 低噪声有利于器件获得更高的SNR。inoise主要包括散弹噪声(ishot)、热噪声(ithermal)、闪烁噪声(i1/f)和产生-复合噪声(ig-r)[41]inoise可以表示为[42]:

$\begin{align} & {{i}_{\text{noise}}}={{(i_{\text{shots}}^{2}+i_{\text{thermal}}^{2}+i_{1/f}^{2}+i_{\text{g}-\text{r}}^{2})}^{\frac{1}{2}}}= \\ & \ \ \ \ \ \ \ \ \ \ {{\left[ 2e{{i}_{\text{d}}}B+\frac{4kTB}{{{R}_{\text{sh}}}}+i(f,B)_{1/f}^{2}+i{{(\text{f},B)}_{\text{g}-\text{r}}} \right]}^{\frac{1}{2}}} \\ \end{align}$

其中, e为元电荷(~1.60×10-19 C), id为暗电流(A), B为带宽(Hz), T为绝对温度(K), k为玻尔兹曼常数(~1.38×10-23 J·K−1), Rsh为探测器的分流电阻(Ω), f为频率(Hz)。其中, 散弹噪声和热噪声与频率f无关, 统称为白噪声, 由上式可知, 低暗电流及宽带隙可有效抑制器件的白噪声[43-44]。闪烁噪声及产生-复合噪声均与频率相关, 闪烁噪声被认为源自载流子捕获和去捕获过程, 仅在低频下出现。钙钛矿单晶X射线探测器的缺陷态密度低, 白噪声占据主导地位[44]。而多晶中存在晶界以及更高的缺陷态密度, 闪烁噪声的影响会显著增强[37]。因此, 高电阻率、低缺陷态密度的钙钛矿材料可有效减少器件噪声, 进而实现高性能X射线探测器的制备。

3 低维卤化物钙钛矿

3.1 低维钙钛矿的结构

通过结构调控, 可获得3D、2D、1D和0D结构钙钛矿(图2)。3D钙钛矿一般具有ABX3的化学式, 其中A为小尺寸有机阳离子(甲胺离子MA+, 甲脒离子FA+等)或无机阳离子(铯离子Cs+, 铷离子Rb+等), B通常为金属阳离子(Pb2+, Sn2+等), X是卤素阴离子(I, Br, Cl等), [BX6]4−八面体以共顶点连接的方式形成3D网状结构。2D钙钛矿中[BX6]4−八面体在一个平面内顶点互连形成平面结构, 而在平面外的维度上分布不连续。2D钙钛矿是一个庞大的材料体系, 其中研究较多的主要有两种: RP结构A′2An−1BnX3n+1, 和Dion-Jacobson(DJ)结构A′An−1BnX3n+1(A′为一价或二价大尺寸阳离子, A为小尺寸阳离子, n为无机[BX6]4−八面体层数)[45-46]

图2

图2   不同维度卤化物钙钛矿的分子结构示意图[17]

Fig. 2   Schematic representation of the molecular structures of halide perovskites with different dimensions[17]


1D和0D钙钛矿则是在2D钙钛矿的基础上, 进一步改变[BX6]4−八面体连接方式来进行构筑。1D钙钛矿的一般化学式为A3BX5, 线性排列的[BX6]4−八面体提高了晶格的骨架强度, 间隔阳离子包裹[BX6]八面体[47]。0D钙钛矿中[BX6]4−八面体被无机或有机阳离子环绕, 形成点状不连续分布状态。钙钛矿的维度调控可调节其光电性质及稳定性, 为获取高性能、高稳定性X射线探测器提供了丰富的材料候选。

3.2 低维钙钛矿在X射线探测中的性能优势

钙钛矿具有对X射线衰减能力强、载流子迁移率高、载流子寿命长等性质, 实现了高灵敏度和低检测下限的直接型X射线探测器的制备[48-49]。然而, 3D钙钛矿中严重的离子迁移限制了探测器的耐偏压稳定性。低维钙钛矿中间隔阳离子产生的量子阱效应使Ea增大, 可有效抑制离子迁移[24], 提高器件的耐偏压稳定性。优异的耐偏压性质使材料可施加高电场以提高X射线探测器中载流子的提取效率, 保证载流子的垂直传输, 消除相邻像素间的信号串扰, 对高分辨成像至关重要。同时, 间隔作用使材料带隙变宽, 降低了材料的本征载流子浓度, 有利于降低噪声, 提升探测器对弱X射线信号的探测能力。此外, 间隔阳离子具有疏水性, 可在一定程度上隔绝水氧, 抑制钙钛矿降解, 使其环境稳定性远优于3D钙钛矿[50]

4 低维钙钛矿单晶X射线探测器

钙钛矿单晶可通过溶液法制备, 包括溶液冷却法、酸沉淀法、诱导外部结晶法、恒温缓慢蒸发法、反溶剂辅助结晶法等[46]。单晶生长的驱动力来源于溶解度随温度或溶剂含量的变化, 通过优化制备工艺和控制晶体的生长速度, 可提高晶体质量[35,51-54]。单晶质量可以通过X射线衍射技术(包括摇摆曲线)、空间电荷限制电流(SCLC)、荧光光谱(PL)等手段表征。

4.1 零维钙钛矿单晶探测器

4.1.1 铅基钙钛矿单晶探测器

在X射线探测领域, 宽带隙半导体的本征载流子浓度低、电阻率大, 为获取低噪声X射线探测器提供了保障。2021年, Xu等[55]制备了0D Cs4PbI6单晶, 具有3.46 eV的宽带隙, 基于此单晶的X射线探测器实现了451.49 μC·Gyair−1·cm−2的灵敏度和90 nGyair·s-1的检测下限, 在37.5~167.7 μGyair·s-1剂量率范围具有很好的线性响应。较宽的线性响应动态范围表明探测器具有较宽的剂量适用性和较强的检测能力。此外, 该单晶的Ea(0.32 eV)高于3D钙钛矿, 同时具有优异的稳定性, 在空气中长期储存, 器件的灵敏度没有明显衰减。

4.1.2 铋基钙钛矿单晶探测器

铋(Bi)具有绿色环保[56]、原子序数高等优点, 且Bi3+具有类似于Pb2+的电子结构, 提供了优异的X射线衰减能力和光电性能, 被广泛用于X射线探测[25,28,53]。0D Bi基钙钛矿的化学式通常为A3Bi2X9, 近年来已有团队报道了多种A位阳离子Bi基钙钛矿单晶在X射线探测中的应用。

2019年, Zheng等[25]首次使用溶液蒸发法制备了英寸级0D MA3Bi2I9单晶并将其用于X射线探测。晶体结构如图3(a)所示, [Bi2I9]3−的团簇被MA+分隔, 呈点状不连续分布。该0D结构所产生的限域效应可以有效阻止I-在外电场下的迁移。Zheng等对晶体进行切割加工(图3(b)), 研究了六方相(001)晶面内(In-plane)和晶面间(Out-of-plane)两种工作模式下的载流子传输性能。研究表明Out-of-plane工作模式下, 单晶的电阻率为5.27×1011 Ω·cm, 在X射探测材料中处于较高水平(图3(c))。基于 MA3Bi2I9单晶的X射线探测器对剂量率低至5.3 nGyair·s−1的医用100 kVp X射线响应灵敏, 是目前钙钛矿X射线探测器检测下限的最佳记录; 探测器的灵敏度~1×104 μC·Gyair−1·cm−2, 在X射线探测器中处于较高水平。此外, 受益于其0D结构对离子迁移的抑制, MA3Bi2I9单晶的Ea(0.46 eV)高于3D Pb基钙钛矿, 离子迁移较弱, 在100 V工作偏压下, 经过>20万次胸透所需的X射线剂量(~23.8 Gyair)辐照后, 探测器的性能无衰减(图3(d)), 展现了极为优异的工作稳定性[25]。2020年, Liu等[54]也制备了MA3Bi2I9单晶, 与2D (PEA)2PbI4和3D MAPbI3相比, 0D MA3Bi2I9暗电流更低, 离子迁移更弱[54]。基于0D MA3Bi2I9单晶制备的阵列化器件(像素: 18×13)获得了钥匙的X射线成像(图3(e))。该研究进一步证明了0D MA3Bi2I9是一种极具应用潜力的X射线探测材料。

图3

图3   0D铋基钙钛矿单晶探测器

Fig. 3   0D bismuth-based perovskite single crystal detector

(a) Schematic crystal structure and photograph of MA3Bi2I9 single crystal[25]; (b) Photograph of the MA3Bi2I9 single crystal after cutting and polishing[25]; (c) Resistivity of representative X-ray detection materials; (d) Device operational stability against continuous X-ray irradiation with high dose rates under a high bias volage[25]; (e) Photograph and corresponding X-ray images of the keys[54]; (f) FWHM of (00l) peaks of Cs3Bi2I9 single crystals, which are prepared by liquid diffusion separation induced crystallization method and inverse temperature crystallization method[53]


除MA3Bi2I9单晶外, Cs3Bi2I9单晶X射线探测器也受到了较多关注[28,53]。2020年, Zhang等[28]采用成核控制溶液法, 制备了厘米级尺寸的全无机Cs3Bi2I9单晶。基于此单晶的X射线探测器实现了1652.3 μC·Gyair−1·cm−2的灵敏度以及130 nGyair·s−1的检测下限。同时该器件在100 ℃下仍具有很好的射线响应, 表现出应用于高温场景的可能性[28]。然而, 研究发现0D Bi基钙钛矿成核过程难以控制, 易形成晶体团簇, 因此制备大尺寸高质量晶体较为困难。2021年, Wei等[53]通过液体扩散分离诱导结晶法减少成核数量, 降低了获得大尺寸Cs3Bi2I9单晶的难度。相较于逆温生长法, 该方法所制备的Cs3Bi2I9单晶具有更高的质量(图3(f)), 基于此单晶的器件实现了更低的检测下限(44.6 nGyair·s−1)。

为进一步解决0D Bi基钙钛矿成核过程难以控制的问题, 2021年, Li等[52]通过二次溶剂挥发法降低成核数量, 获得了厘米级0D FA3Bi2I9单晶。进一步测试表明, 尽管FA3Bi2I9单晶的Ea(0.56 eV)较高, 但μτ较低(1.3×10−4 cm2·V−1), 从而限制了探测器的性能, 灵敏度和检测下限仅达到598.1 μC·Gyair−1·cm−2和0.2 μGyair·s−1。在钙钛矿光伏电池的研究中, FAPbI3展示出比MAPbI3更优的光电性质和稳定性, 但这一规律在0D Bi基钙钛矿X射线探测器中并不适用。尽管使用FA阳离子替代MA阳离子后器件稳定性得到提升, 但性能下降, 深层次的原因还需进一步研究。

4.2 一维钙钛矿单晶探测器

2019年, Tao等[57]制备了基于1D (H2MDAP)BiI5单晶(H2MDAP为N-甲基-1,3-二氨基丙醇)的X射线探测器, 如图4(a)所示。尽管 (H2MDAP)BiI5具有比CZT更好的X射线衰减能力以及1010 Ω·cm的高体电阻率, 但探测器仅获得了1 μC·Gyair−1·cm−2的灵敏度。2020年, Yao等[58]制备了 (DMEDA)BiI5单晶(DMEDA2+: CH3NH3CH2CH2NH3CH32+), 其晶体结构如图4(b)所示, [BiI5]2-和DMEDA2+有机阳离子共点连接组成不对称单元, 该单元中的Bi-I八面体共顶点连接, 形成1D链式结构, 热稳定性优异。然而, 基于该单晶的X射线探测器也仅获得了72.5 μC·Gyair-1·cm-2的灵敏度。目前1D Bi基单晶X射线探测器性能较差, 可能是1D晶体结构中缺陷态密度较高和载流子迁移率较低导致的。未来通过设计有机阳离子以提升载流子迁移率、优化单晶质量、降低载流子复合是提升探测器性能的关键。

图4

图4   1D和2D铋基钙钛矿单晶探测器

Fig. 4   1D and 2D bismuth-based perovskite single crystal detectors

(a) Photograph of 1D (H2MDAP)BiI5 single crystal and schematic diagram of device structure[57]; (b, c) Crystal structure of (b) 1D (DMEDA)BiI5 and (c) 2D (NH4)3Bi2I9[29,58]; (d) Photograph of the (NH4)3Bi2I9 single crystal and two different device structures based on the (100) plane[29]


相较之下, 1D Pb基钙钛矿单晶X射线探测器表现出更高的灵敏度。2019年, Zhang等[59]制备了准1D针状CsPbI3单晶并用于X射线探测。在200 V偏压下器件的暗电流仅为38 pA, 有效降低了X射线探测器的噪声, 获得了2370 μC·Gyair−1·cm−2的灵敏度[60]。虽然该器件表现出较优异的探测性能, 但横向生长的针状单晶体积较小, 难以实现大面积应用。同时, 晶体固有的脆性大大增加了使用时损坏的风险。

4.3 (准)二维钙钛矿单晶探测器

纯2D(n=1)与准2D(n>1)钙钛矿是与3D钙钛矿性质最为接近的材料体系, 其层状排列的金属卤化物八面体结构被A位阳离子隔开, 呈现交错的间隔层与无机层。调节金属卤化物无机层的层数可以方便地调控钙钛矿载流子寿命、载流子迁移率以及带隙宽度等性质, 显著提升其在光电器件中的应用潜力。

4.3.1 铋基钙钛矿单晶探测器

A3Bi2I9体系中, A位阳离子尺寸减小可以使材料的结构从0D向2D转变。2019年, Zhuang等[29]制备了厘米级2D (NH4)3Bi2I9单晶。晶体结构如图4(c)所示, 垂直于解理面(001)方向的[BiI6]3-八面体通过氢键和范德瓦尔斯力连接, 导致了更局域化的电子波函数, 限制了垂直(001)平面方向上的载流子输运; 在平行于(001)面方向上, 2D (NH4)3Bi2I9单晶中无[Bi2I9]3-团簇, 具有更离域的电子带, 有利于载流子的传输和收集。2D层状结构具有的各向异性使得该单晶探测器可以在不同晶向上实现高灵敏度和低检测下限, 即分别在平行和垂直(001)方向上获得了8.2×103 µC·Gyair−1·cm-2的灵敏度以及55 nGyair·s−1的检测下限, 与0D MA3Bi2I9单晶探测器同时在六方相c轴上实现高灵敏度和低检测下限不同。利用这一特点, 改变器件结构(图4(d))可将该单晶探测器选择性应用于高灵敏度或低剂量的X射线检测模式。同时, 平行和垂直方向器件的Ea分别为0.72、0.91 eV, 均高于3D钙钛矿, 表明2D (NH4)3Bi2I9单晶中离子迁移得到了有效抑制。

为拓展2D A3Bi2X9单晶在X射线探测领域的应用。2020年, Xia等[61]制备了2D的Rb3Bi2I9单晶, 具有较高的Ea(0.56 eV)和μτ(2.51×10−3 cm2·V−1)。基于Rb3Bi2I9单晶的X射线探测器获得了优于商业a-Se探测器的灵敏度以及8.32 nGyair·s−1的低检测下限。

4.3.2 RP钙钛矿单晶探测器

图5(a)所示, RP钙钛矿中无机层通过单胺间隔阳离子的范德华力作用连接, 无机层厚度调控及间隔阳离子设计, 可以改善材料的光电性质[62-63]。2022年, Yukta等[64]制备了2D RP结构的(BA)2PbI4单晶, 具有2.6×1011 Ω·cm的高电阻率。基于此单晶的X射线探测器在14~584 μGyair·s−1的宽剂量率范围下表现出很好的线性响应, 灵敏度为148 μC·Gyair−1·cm−2, 检测下限为241 nGyair·s−1。该器件具有优异的辐照稳定性和环境稳定性。图5(b)为基于此器件的单点扫描X射线成像, 进一步证明了RP钙钛矿材料在X射线探测中的应用潜力。

图5

图5   2D钙钛矿X射线探测器

Fig. 5   2D perovskite X-ray detectors

(a) Schematic diagram of the crystal structures of RP and DJ perovskites [63]; (b) X-ray image of nut based on (BA)2PbI4 single crystal device[64]; (c) X-ray images generated by (F-PEA)2PbI4 single crystal device[66]; (d) Schematic diagram of the transition of pure 2D perovskites to quasi-2D perovskites[70]


然而, RP钙钛矿中由于存在量子阱效应, 激子结合能较大, 显著抑制了自由载流子的产生, 在纯2D结构的钙钛矿中更为显著[65]。目前, 已有团队报道了通过掺杂或调节有机层结构以提高纯2D RP钙钛矿载流子迁移和提取速率的方法。2020年, Li等[66]制备了纯2D RP结构的氟苯基铅碘(F-PEA)2PbI4单晶, 具有1.36×1012 Ω·cm的高电阻率。F与有机间隔物PEA+通过超分子静电相互作用交联使其有序排列, 在阻断离子迁移路径、提高(PEA)2PbI4单晶稳定性的同时, 增加电子云重叠, 改善其光电特性。基于此单晶的X射线探测器在120 kVp的高能X射线下实现了3402 µC·Gyair-1·cm−2 的灵敏度以及23 nGyair·s−1的检测下限, 同时表现出优异的辐照稳定性。进一步的单点扫描X射线成像如图5(c)所示。

缺陷调控也是提升钙钛矿探测器性能的重要手段。2022年, Qian等[67]制备了纯2D结构的 (PMA)2PbI4单晶, 并通过注入Cu2+引入Cu间隙, 带来具有额外电荷转移通道的施主和受主态, 有效降低激子结合能, 提高了载流子提取速率, 改善了(PMA)2PbI4单晶的性能, 实现了8.05×10-3 cm2·V-1μτ值。该单晶放置于空气中90 d, 其物相结构未发生变化, 表现出优异的稳定性。

此外, 通过调控金属卤化物八面体层数制备准2D钙钛矿也是减弱量子阱效应、改善光电性能的有效措施(图5(d))。2021年, Xiao等[68]制备了准2D结构的(BA)2CsPb2Br7单晶, 基于此单晶的器件在面内方向上实现了13260 µC·Gyair-1·cm−2的高灵敏度以及72.5 nGyair·s−1的检测下限, 同时该器件在278.4 μGyair·s-1的X射线剂量率下表现出良好的工作稳定性。该研究证明准2D钙钛矿材料制备高稳定性、高性能X射线探测器的可行性。

此外, 2D钙钛矿中有机阳离子运动自由度大、偶极子有序排列, 可获得显著的铁电性。半导体中铁电极化会形成强大的局部内建电场, 带来两方面的优势: (1)改善载流子提取, 有利于提高探测性能; (2)依靠内建电场实现载流子分离和提取, 无外加偏压即可进行X射线探测。2020年, Ji等[69]采用降温法制备了具有双轴铁电性质的准2D BA2EA2Pb3Br10单晶, 铁电极化使其在bc轴上获得了较高的μτ(7.6×10−3, 1.0×10−2 cm2·V−1)。在5 V·mm-1的电场下, 器件实现了6.8×103 µC·Gyair−1·cm−2的灵敏度。2021年, Ji等[70]又通过引入Cs+制备了具有铁电性的准2D (CH3OC3H9N)2CsPb2Br7单晶, 器件在零偏压下获得了410 μC·Gyair-1·cm-2的灵敏度。利用钙钛矿材料的铁电性来实现高性能的X射线探测和自驱动探测[71]也是未来研究的一个新方向。

4.3.3 DJ钙钛矿单晶探测器

与RP结构相比, DJ结构中相邻无机层间通过双胺阳离子的强氢键相互作用连接, 间隔距离更短(图5(a))[63], 因此, 理论上DJ钙钛矿的稳定性和载流子传输能力优于RP钙钛矿。2020年, Shen等[72]制备了热稳定性优异的BDAPbI4单晶(BDA=NH3C4H8NH3), 基于此单晶的X射线探测器在0.31 V·mm-1的电场下实现了242 μC·Gyair-1·cm-2的灵敏度, 表现出远低于3D器件的暗电流漂移。然而, 纯2D DJ钙钛矿具有和RP钙钛矿类似的问题, 较强的量子阱效应虽然有效抑制了离子迁移, 但同时也阻碍了自由载流子的产生, 进而限制了器件的探测性能。

为降低量子阱效应带来的影响, 提高器件性能, 2022年, Xiao等[73]制备了准2D (BDA)CsPb2Br7单晶。基于(BDA)CsPb2Br7单晶的探测器在面外方向上实现了725.5 μC·Gyair−1·cm-2的灵敏度, 优于面外方向的BA2CsPb2Br7单晶探测器。该探测器在10 V偏压以及50 kV管电压的X射线长时间照射下, 暗电流和光电流曲线均无明显变化, 展现出较好的稳定性。钙钛矿太阳能电池的研究发现, 由芳香族二胺阳离子和脂肪族二胺阳离子构建的DJ相钙钛矿在光学和光电性能方面也存在显著差异, 其中基于芳香族二胺阳离子的钙钛矿电池通常表现出更高的光电转换效率[74]。2022年, Fu等[75]制备了DJ结构的(3AMPY)(FA)Pb2I7单晶, 3-(氨基甲基)吡啶鎓(3AMPY)为芳香族二胺阳离子。研究表明, FA+取代MA+, 提高了器件的稳定性。基于芳香族二胺阳离子3AMPY2+和FA+双重优化的(3AMPY)(FA)Pb2I7 X射线探测器, 在200 V偏压以及129.3~592.1 μGyair·s−1的X射线剂量率范围内表现出良好的线性响应, 实现了5.23×104 μC·Gyair−1·cm−2的高灵敏度。单晶放置于空气中60 d, 其物相结构未发生变化, 展示出较好的环境稳定性。器件在200 V·mm-1的电场下基线稳定, 且辐照稳定性良好。

然而, 高质量、大尺寸单晶获取困难, 制约了单晶X射线探测器的实际应用, 这在RP和DJ结构中尤其突出。例如, DJ钙钛矿中二胺阳离子的氢键与极性溶剂之间存在强相互作用, 导致成核和可控生长相对比较困难, 单晶的尺寸相对较小。因此, 如何优化单晶的制备工艺, 获得大尺寸、高质量的单晶是限制其未来发展的瓶颈之一, 需要仔细考虑并深入研究。

5 低维钙钛矿多晶X射线探测器

高质量单晶的制备周期较长, 且很难满足阵列化应用对大尺寸的需求, 制约了其发展。而多晶薄膜的制备周期短, 易与商业化读取电路集成, 可采用刮刀涂布法、丝网印刷等大面积器件的制备方法, 有利于实现成像的商业化应用。2017年, Nature发表了三星尖端技术研究所和韩国成均馆大学的研究成果, Kim等[76]实现了大面积多晶钙钛矿与TFT读数器直接集成, 并完成了清晰的人手X射线成像演示, 展示了钙钛矿X射线探测器在医学影像方面的应用潜力。与单晶相比, 多晶钙钛矿的两侧更容易沉积电荷传输材料, 为高性能的器件结构设计提供了便捷路线。因此, 研制高质量大面积的多晶薄膜是实现钙钛矿X射线探测器应用的重要发展方向。近期关于低维多晶钙钛矿X射线探测器的研究取得了显著进展, 在高灵敏度、低检测下限、高稳定的射线成像方面具有独特优势。

5.1 零维钙钛矿多晶探测器

MA3Bi2I9单晶具有优异的探测性能, 为进一步实现该材料的应用, 2020年, Tie等[77]采用等静压制备工艺, 将MA3Bi2I9晶体粉末压制成型, 制备了毫米级厚度的MA3Bi2I9多晶片。该多晶片具有2.28×1011 Ω·cm的高电阻率,其器件实现了563 µC·Gyair−1·cm−2的灵敏度以及9.3 nGyair·s−1的检测下限。同时探测器在2000 V·cm-1的高电场以及超过320 Gyair的大剂量辐照下, 展现出优异的工作稳定性。此外, 为了集成MA3Bi2I9多晶与商业化基底, 2022年, Xin和Dong等[78-79]采用与大面积薄膜制备工艺兼容的刮刀涂布和喷涂法来制备薄膜。采用绿色的离子液体醋酸甲胺作为溶剂, 结合加热易挥发的MACl作为添加剂, 调控薄膜的结晶成核过程, 制备的MA3Bi2I9多晶薄膜探测器获得了~100 µC·Gyair−1·cm−2的灵敏度以及~100 nGyair·s−1的检测下限, 优于a-Se探测器。为了进一步提升基于MA3Bi2I9多晶的X射线探测性能, 并拓展其应用范围, 2022年, Liu等[80]在尼龙膜中灌注MA3Bi2I9多晶, 获取了柔性的MA3Bi2I9薄膜, 进一步通过F4-TCNQ分子掺杂, 提升了钙钛矿材料的导电性。基于尼龙膜骨架和F4-TCNQ改性的MA3Bi2I9多晶柔性探测器灵敏度和检测下限分别为2065 µC·Gyair−1·cm−2和 2.7 nGyair·s−1, 且表现出很好的偏压稳定性、辐照稳定性以及机械稳定性, 进一步展示了MA3Bi2I9多晶在X射线探测方面的应用潜力。

除MA3Bi2I9外, 2022年, Chen等[81]也采用等静压法制备了0D Cs4PbBr6多晶片, 具有1.04 eV的高离子迁移激活能。基于此多晶的器件实现了7068 µC·Gyair−1·cm−2的灵敏度以及1.75 nGyair·s−1的检测下限。进一步通过单点以及线性阵列扫描的方式研究了器件的X射线成像效果, 获得了5.2 lp·mm−1的空间分辨率以及清晰的剪刀与字母“H”成像。与MA3Bi2I9多晶器件相同, 该方法制备的X射线探测器具有较优异的性能, 然而如何与TFT基板结合实现阵列化探测器制备仍需要进一步研究。

除Pb、Bi基钙钛矿外, 2019年, Xu等[82]采用静电辅助喷涂的方法制备了具有良好稳定性的全无机0D Cs2TeI6薄膜X射线探测器。然而, 较低的电荷迁移率限制了其探测性能, 仅获得了19.2 μC·Gyair−1·cm−2的探测灵敏度。

5.2 (准)二维钙钛矿多晶探测器

尽管0D钙钛矿探测器展现出优异的稳定性和良好的性能, 但与3D钙钛矿X射线探测器相比, 灵敏度仍存在较大差距。0D结构中载流子限域效应较强导致迁移率较低, 这是限制其性能的重要原因之一。与之相比, 2D材料的限域效应相对较弱, 载流子迁移率较高。不过, 研究结果表明, 纯2D钙钛矿材料中长链阳离子带来的量子阱效应, 同样导致较差的电荷传输和较短的载流子寿命, 探测性能不佳。因此, 调控准2D钙钛矿中无机层的厚度, 以平衡载流子迁移率和稳定性之间的关系, 对获取兼具稳定性和高性能的探测器十分关键。

2022年, 中国工程物理研究院化工材料研究所Zhang等[26]通过甲胺气体与RP钙钛矿前驱体之间的固-气反应获得BA2MAn-1PbnI3n+1·xCH3NH2液态钙钛矿。这一工艺既保留了钙钛矿溶液加工的优点, 又避免使用有毒、高沸点溶剂。进一步通过调节RP钙钛矿材料的维度实现了钙钛矿中电子和离子迁移特性的高度调控。将RP液态钙钛矿灌注至具有多孔结构的尼龙膜内, 获得了RP钙钛矿−尼龙复合材料(图6(a))。调节RP结构钙钛矿的八面体层数, 可以有效控制离子迁移、材料电阻率、载流子迁移率等性质, 获得了Ea在0.54~1.57 eV范围可调的系列复合材料。 Zhang等[26]进一步将无溶剂层压制备的准2D BA2MAn-1PbnI3n+1 RP钙钛矿-尼龙复合材料应用于X射线探测, 获取了高灵敏度、高稳定性的X射线探测器。该研究为认识离子迁移对X射线探测器性能的影响提供了实验证据。基于BA2MA9Pb10I31的探测器可以兼顾稳定性和探测性能, 在100 V偏压下工作稳定, 具有~104 μC·Gyair−1·cm−2的灵敏度, <10 nGyair·s−1的检测下限。进一步结合单点扫描X射线成像对汉字实现了清晰成像(图6(b))。该方法制备的X射线探测器具有工艺简单、重复性好、厚度可控、器件性能优异等优势, 而且通过增大热压设备和尼龙膜的面积可获得大面积均匀器件, 然而该方法存在与热等静压制备晶片相似的问题, 主要难点是如何与阵列化基板集成, 未来的研究可通过添加黏接剂将器件与基板有效结合, 而黏接剂的选择必须考虑导电性、黏接牢固性等问题。

图6

图6   准2D多晶X射线探测器

Fig. 6   Quasi-2D polycrystalline X-ray detector

(a) Preparation of RP perovskite-nylon matrix by a lamination process[26]; (b) Photograph and corresponding X-ray image of a copper Chinese characters pattern[26]; (c) A-site cation engineering to prepare RP perovskite X-ray detectors[22]; (d) Microstructure of the TFT substrate and 12×12 pixel perovskite X-ray detector[22]; (e) Images of visible light and X-rays based on BA2MA9Pb10I31 detector[22]; (f) X-ray image based on (BA2PbBr4)0.5-FAPbI3 device[83]; (g) Dark current uniformity of MAPbI3 device (left) and quasi-2D PEA2MA8Pb9I28 device (right)[84]


除铅碘八面体层数外, RP钙钛矿中A位阳离子的尺寸对离子迁移及电子传输存在直接影响。更大尺寸的阳离子可以提供更好的离子迁移抑制作用, 但电子传输同时受到抑制, 不利于提升器件灵敏度。为了探究A2MA9Pb10I31·xCH3NH2中A位离子对X射线探测器性能和稳定性的影响, 2022年, 中国工程物理研究院化工材料研究所Xin等[22]在前期工作的基础上, 通过调控A位胺阳离子的烷基链(碳链长度3~6, 图6(c)), 研究了器件离子迁移激活能、载流子迁移率、灵敏度等与碳链长度之间的变化关系。结果表明, 随着A位阳离子烷基链延长, 器件的稳定性增大, 但探测器性能下降。BA2MA9Pb10I31可以平衡稳定性和探测性能, 结合液态钙钛矿作为黏结剂, 在12×12像素的TFT阵列(图6(d))上制备了灵敏度∼7000 μC·Gyair−1·cm−2, 检测下限7.8 nGyair·s−1的阵列化探测器, 在可见光及X射线条件下均可获得清晰的成像效果(图6(e))。该探测器不仅性能优异, 同时在100 V偏压下运行10 h以上, 未出现暗电流的漂移情况, 工作稳定性极优。

准2D钙钛矿的阳离子不仅直接影响材料性质及探测器性能, 还可以很好地调控钙钛矿薄膜的成核结晶过程。2022年, Peng等[83]混合2D、3D钙钛矿的前驱体溶液, 制备出微米级厚度的准2D钙钛矿膜。研究发现混合2D、3D钙钛矿溶液可以获得更加均匀致密的膜, 其中基于X位调控进一步优化的(BA2PbBr4)0.5-FAPbI3膜具有最小的表面粗糙度和最佳的探测性能, 基于此材料的X射线探测器实现了1.36×104 μC·Gyair-1·cm-2 的灵敏度以及4.2 nGyair·s-1 的低检测限。如图6(f)所示, 该准2D器件在32×32像素的阵列板上实现了很好的成像效果。然而, 该研究中旋涂制备的薄膜厚度仅为数微米, 虽然满足软X射线场景下的应用要求, 而对于硬X射线或医用X射线成像, 则必须考虑制备数百微米至毫米厚膜的可行性。

2022年, 华中科技大学He等[84]研究也证明, 将2D RP结构的PEA2PbI4钙钛矿引入3D MAPbI3中, 可以获得更加均匀的准2D PEA2MA8Pb9I28钙钛矿, 低温刮涂法制备6×6像素的准2D探测器表现出优异的暗电流均匀性(图6(g))。同时, 该探测器在80~580 μGyair·s−1的剂量率范围内线性响应较好, 实现了10860 µC·Gyair−1·cm−2的高灵敏度以及69 nGyair·s−1的低检测下限, 同时二维量子阱效应抑制了离子迁移以及长链PEA+对缺陷的钝化作用, 该器件具有较好的性能和稳定性。

准2D钙钛矿在高稳定性、高灵敏X射线探测器制备中具有巨大潜力, 相关研究为进一步制备大面积、阵列化的实用器件提供了坚实的基础。表1总结了近年来低维钙钛矿X射线探测器的代表性工作, 准2D钙钛矿X射线探测器距离应用最为接近, 继续优化制备工艺以获得大面积、阵列化、与TFT等商业读取电路集成的成像探测器是未来的重点发展方向。

表1   低维钙钛矿X射线探测器性能比较

Table 1  Comparison of low-dimensional perovskite X-ray detectors

CompoundEph/keV,
Vp/kVp
Thickness/
mm
Electric field/
(V·mm-1)
Sensitivity/
(µC·Gyair−1·cm−2)
LoD/
(nGyair·s−1)
Resistivity/
(Ω·cm)
Bandgap/
eV
µτ/
(cm2·V−1)
Ref.
Single crystal
Cs4PbI630 keV--451.4990-3.469.7×10-4[55]
Cs3Bi2I940 kVp1.2501652.31302.79×10101.967.97×10-4[28]
Cs3Bi2I945 keV112096444.61.12×109~1.891.87×10-3[53]
MA3Bi2i9100 kVp2.548106200.625.27×10111.982.8×10-3[25]
MA3Bi2i940 kVp1601947833.74×10101.992.87×10-3[54]
FA3Bi2I945 keV0.9~560598.12007.8×10102.082.4×10-5[52]
(DMEDA)BiI550 kVp0.649472.5--1.82-[58]
(H2MDAP)BiI570 keV251.0-2.1×10101.83-[57]
CsPbI350 kVp-4.17237030207.4×1092.673.63×10-3[59]
(NH4)3Bi2I9 (∥001)22 keV-2.28200210-2.051.1×10-2[29]
(NH4)3Bi2I9 (⊥001)22 keV-6.580355-2.054.0×10-3[29]
Rb3Bi2I930 keV1300159.78.322.3×1091.892.51×10-3[61]
(F-PEA)2PbI4120 keV1.5~1303402231.36×10122.305.1×10-4[66]
(PMA)2PbI440 kVp0.9~562832130-2.018.05×10-3[67]
BA2PbI430 kVp2101482412.6×10112.244.5×10-4[64]
BA2CsPbBr740 kVp3.912.531326072.52.2×1092.74-[68]
BA2EA2Pb3Br1070 keV256.8×10355004.5×10102.551.0×10-2[69]
(CH3OC3H9N)2CsPb2Br780 kVp20410--2.513.2×10-3[70]
BDAPbI440 kVp-310242430-2.374.43×10-4[72]
(BDA)CsPb2Br750 kVp0.7~43725.538104.35×10102.762.33×10-5[73]
(3AMPY)(FA)Pb2I750 kVp12005.23×104151-1.542.0×10-3[75]
Polycrystalline
MA3Bi2i935.5 keV12105639.32.28×10112.084.6×10-5[77]
MA3Bi2i930.6 keV~0.1150~35140~5×10112.093.89×10-5[78]
MA3Bi2i930.6 keV~0.05600~10098.43.38×10112.031.6×10-6[79]
MA3Bi2i940 kVp0.1200020652.713.5×1081.86-[80]
Cs4PbBr6-0.3666.770681.751.376×10113.881.01×10-3[81]
Cs2TeI640 kVp0.0252519.2-4.2×10101.575.2×10-5[82]
BA2MA9Pb10I31~60 keV0.91105362.38.1~1×1010~1.603.99×10-5[26]
BA2MA9Pb10I3145 keV121071099.3~1.1×1010~1.61~5×10-5[22]
(BA2PbBr4)0.5FAPbI3-0.006~1671.36×1044.2---[83]
PEA2MA8Pb9I2850 kVp-60010 860695.4×10101.5042.6×10−5[84]

新窗口打开| 下载CSV


6 总结与展望

低维钙钛矿材料具有优异的性能和稳定性, 受到越来越多的关注。多晶X射线探测器可放大、易集成, 在成像领域更具实用化价值。对于低维多晶钙钛矿X射线探测器, 未来的研究方向如下:

(1)准2D钙钛矿器件的研制。0D、1D以及2D钙钛矿材料具有较高的电阻率及稳定性, 但间隔阳离子阻碍了载流子传输, 限制了器件性能。准2D结构的钙钛矿器件, 兼具低维钙钛矿的稳定性以及3D钙钛矿的优异光电特性, 是未来X射线探测器的重要研究方向。

(2)器件结构设计。p-n结等具有整流效应的器件可以显著抑制暗电流, 进而降低器件的噪声水平。常见的几种具有整流效应的器件结构包括p-n结、体相异质结、维度异质结和相结等[85]。同时, 利用钙钛矿材料的铁电性质也可以达到类似的效果, 值得探索。电极结构设计对器件性能影响显著。通过设计具有暗电流分流作用的电极结构, 可以有效降低X射线探测器的暗电流, 同时减少噪声和基线漂移[86]。通过设计更先进的器件结构实现高性能探测器, 是值得研究的重要方向。

(3)钙钛矿X射线探测器的工作机制。当前的研究多集中于材料开发、制备工艺及基本性能的表征。同时, 分析材料性质与器件性能的手段比较单一, 器件的线性动态范围、噪声种类及来源等关键参数关注较少。进一步丰富测试表征手段, 深入研究钙钛矿X射线探测器性能的影响机制, 对于该领域的发展具有重要意义。

(4)实现大面积、像素化应用。未来钙钛矿X射线探测器在医学影像等领域的应用须满足钙钛矿均匀致密、厚度适合(亚毫米级及以上)、与阵列化读取电路基底结合良好等要求。目前缺乏实现大面积、毫米厚度、性质均一的薄膜制备技术, 限制了大面积、阵列化X射线成像面板的获取。溶液法制备是钙钛矿材料的显著优势之一, 未来开发适用刮刀涂布、丝网印刷等制备钙钛矿X射线成像面板的工艺十分重要。溶剂挥发、应力释放等显著影响成膜质量的因素值得研究。

尽管低维钙钛矿在X射线探测领域有着巨大的优势, 多种类型的材料都表现出优异的探测性能, 但目前的研究多集中于单像素探测器及其扫描移动成像, 离实用化器件的要求较远。与TFT等商业读取电路集成, 构建钙钛矿X射线成像面板的报道仍然较少。制备高质量、高稳定性、大面积的钙钛矿厚膜用于阵列化成像面板仍然充满挑战。为了实现钙钛矿X射线成像面板的高空间分辨率、高密度分辨和低成像剂量, 未来需要进一步从材料选择、器件结构设计、工作机制研究等多方面进行优化。

参考文献

ZHOU Y, CHEN J, BAKR O M, et al.

Metal halide perovskites for X-ray imaging scintillators and detectors

ACS Energy Lett., 2021, 6(2): 739.

DOI      URL     [本文引用: 1]

MENG G, YE Y, FAN L, et al.

Recent progress of halide perovskite radiation detector materials

J. Inorg. Mater., 2020, 35(11): 1203.

DOI      [本文引用: 1]

Owing to high X/&#x003b3;-ray absorption coefficient, high carrier mobility lifetime product, and low temperature solution growth, halide perovskites emerged as promising room temperature radiation detector materials, which outperform traditional high-purity Ge and CdZnTe materials in term of low-cost, chip compatibility and large-area imaging. Starting from the fundamental properties of halide perovskites and the principle of radiation detectors, the development of halide perovskite radiation detectors since 2015 was briefly introduced. Then, recent progresses of direct radiation detectors (intensity, imaging, energy spectroscopy) and indirect scintillator detectors were systematically reviewed, and the crucial factors for high-performance detectors were discussed, which could provide valuable guidance for further boosting performance of halide-perovskite-based radiation detectors in future.

LIN E C.

Radiation risk from medical imaging

Mayo Clin. Proc., 2010, 85(12): 1142.

DOI      PMID      [本文引用: 1]

This review provides a practical overview of the excess cancer risks related to radiation from medical imaging. Primary care physicians should have a basic understanding of these risks. Because of recent attention to this issue, patients are more likely to express concerns over radiation risk. In addition, physicians can play a role in reducing radiation risk to their patients by considering these risks when making imaging referrals. This review provides a brief overview of the evidence pertaining to low-level radiation and excess cancer risks and addresses the radiation doses and risks from common medical imaging studies. Specific subsets of patients may be at greater risk from radiation exposure, and radiation risk should be considered carefully in these patients. Recent technical innovations have contributed to lowering the radiation dose from computed tomography, and the referring physician should be aware of these innovations in making imaging referrals.

HEISS W, BRABEC C.

Perovskites target X-ray detection

Nat. Photonics, 2016, 10(5): 288.

DOI      [本文引用: 1]

KASAP S O.

X-ray sensitivity of photoconductors: application to stabilized a-Se

J. Phys. D: Appl. Phys., 2000, 33(21): 2853.

DOI      URL     [本文引用: 1]

SZELES C.

CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications

Phys. Status Solidi B, 2004, 241(3): 783.

DOI      URL     [本文引用: 1]

GUERRA M, MANSO M, LONGELIN S, et al.

Performance of three different Si X-ray detectors for portable XRF spectrometers in cultural heritage applications

J. Instrum., 2012, 7(10): C10004.

DOI      URL     [本文引用: 1]

LUKE P N, AMMAN M, TINDALL C, et al.

Recent developments in semiconductor gamma-ray detectors

J. Radioanal. Nucl. Chem., 2005, 264(1): 145.

DOI      URL     [本文引用: 1]

SCHIEBER M, HERMON H, ZUCK A, et al.

Thick films of X-ray polycrystalline mercuric iodide detectors

J. Cryst. Growth, 2001, 225(2): 118.

DOI      URL     [本文引用: 1]

JANA A, CHO S, PATIL S A, et al.

Perovskite: scintillators, direct detectors, and X-ray imagers

Mater. Today, 2022, 55: 110.

DOI      URL     [本文引用: 1]

HE M, LI B, CUI X, et al.

Meniscus-assisted solution printing of large-grained perovskite films for high-efficiency solar cells

Nat. Commun., 2017, 8(1): 16045.

DOI      PMID      [本文引用: 1]

Control over morphology and crystallinity of metal halide perovskite films is of key importance to enable high-performance optoelectronics. However, this remains particularly challenging for solution-printed devices due to the complex crystallization kinetics of semiconductor materials within dynamic flow of inks. Here we report a simple yet effective meniscus-assisted solution printing (MASP) strategy to yield large-grained dense perovskite film with good crystallization and preferred orientation. Intriguingly, the outward convective flow triggered by fast solvent evaporation at the edge of the meniscus ink imparts the transport of perovskite solutes, thus facilitating the growth of micrometre-scale perovskite grains. The growth kinetics of perovskite crystals is scrutinized by in situ optical microscopy tracking to understand the crystallization mechanism. The perovskite films produced by MASP exhibit excellent optoelectronic properties with efficiencies approaching 20% in planar perovskite solar cells. This robust MASP strategy may in principle be easily extended to craft other solution-printed perovskite-based optoelectronics.

WANG Q, ZHENG X, DENG Y, et al.

Stabilizing the α-phase of CsPbI3 perovskite by sulfobetaine zwitterions in one-step spin-coating films

Joule, 2017, 1(2): 371.

DOI      URL     [本文引用: 1]

GLUSHKOVA A, ANDRIČEVIĆ P, SMAJDA R, et al.

Ultrasensitive 3D aerosol-jet-printed perovskite X-ray photodetector

ACS Nano, 2021, 15(3): 4077.

DOI      PMID      [本文引用: 1]

X-ray photon detection is important for a wide range of applications. The highest demand, however, comes from medical imaging, which requires cost-effective, high-resolution detectors operating at low-photon flux, therefore stimulating the search for novel materials and new approaches. Recently, hybrid halide perovskite CHNHPbI (MAPbI) has attracted considerable attention due to its advantageous optoelectronic properties and low fabrication costs. The presence of heavy atoms, providing a high scattering cross-section for photons, makes this material a perfect candidate for X-ray detection. Despite the already-successful demonstrations of efficiency in detection, its integration into standard microelectronics fabrication processes is still pending. Here, we demonstrate a promising method for building X-ray detector units by 3D aerosol jet printing with a record sensitivity of 2.2 × 10 μC Gy cm when detecting 8 keV photons at dose rates below 1 μGy/s (detection limit 0.12 μGy/s), a 4-fold improvement on the best-in-class devices. An introduction of MAPbI-based detection into medical imaging would significantly reduce health hazards related to the strongly ionizing X-rays' photons.

XIA M, SONG Z, WU H, et al.

Compact and large-area perovskite films achieved via soft-pressing and multi-functional polymerizable binder for flat-panel X-ray imager

Adv. Funct. Mater., 2022, 32(16): 2110729.

DOI      URL     [本文引用: 1]

ZHU M, DU X, NIU G, et al.

Template directed perovskite X-ray detectors towards low ionic migration and low interpixel cross talking

Fundamental Research, 2022, 2(1): 108.

DOI      URL     [本文引用: 1]

MESCHER H, SCHACKMAR F, EGGERS H, et al.

Flexible inkjet-printed triple cation perovskite X-ray detectors

ACS Appl. Matter. Interfaces, 2020, 12(13): 15774.

[本文引用: 1]

ZHOU C, LIN H, HE Q, et al.

Low dimensional metal halide perovskites and hybrids

Mater. Sci. Eng. R Rep., 2019, 137: 38.

DOI      URL     [本文引用: 3]

WEI W, ZHANG Y, XU Q, et al.

Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging

Nat. Photonics, 2017, 11(5): 315.

DOI      URL     [本文引用: 1]

QIAN W, XU X, WANG J, et al.

An aerosol-liquid-solid process for the general synthesis of halide perovskite thick films for direct-conversion X-ray detectors

Matter, 2021, 4: 942.

DOI      URL     [本文引用: 1]

HU M, JIA S, LIU Y, et al.

Large and dense organic-inorganic hybrid perovskite CH3NH3PbI3 wafer fabricated by one-step reactive direct wafer production with high X-ray sensitivity

ACS Appl. Matter. Interfaces, 2020, 12(14): 16592.

[本文引用: 1]

YAKUNIN S, SYTNYK M, KRIEGNER D, et al.

Detection of X-ray photons by solution-processed lead halide perovskites

Nat. Photonics, 2015, 9(7): 444.

DOI      [本文引用: 2]

XIN D, ZHANG M, FAN Z, et al.

A-site cation engineering of Ruddlesden-Popper perovskites for stable, sensitive, and portable direct conversion X-ray imaging detectors

J. Phys. Chem. Lett., 2022, 13: 11928.

DOI      PMID      [本文引用: 6]

Perovskite flat-panel X-ray detectors are promising products for realizing low-dose medical imaging, a nondestructive test, and security inspection. However, the perovskite X-ray imager still faces intractable problems such as severe baseline drift, a low signal-to-noise ratio, and rapid performance degradation, which were involved by the notorious intrinsic ion migration of the perovskite functional layer. In this work, sensitive, stable, and portable pixel quasi-two-dimensional (2D) Ruddlesden-Popper (RP) perovskite X-ray imagers were obtained by an advanced solvent-free laminated fabrication approach. A-Site cation engineering of RP perovskites provides a hint for solving the trade-off between stability and detection performance, resulting in a stable pixel X-ray imager that shows a sensitivity of ∼7000 μC Gy cm, a detection limit of 7.8 nGy s, and good 2D multipixel X-ray imaging. This work demonstrates both a high-performance, stable X-ray imager and its robust fabrication, paving the way for adopting a RP perovskite imager as novel flat-panel X-ray detectors.

LIU Y, ZHANG Y, ZHU X, et al.

Triple-cation and mixed-halide perovskite single crystal for high-performance X-ray imaging

Adv. Mater., 2021, 33(8): 2006010.

DOI      URL     [本文引用: 1]

LIN Y, BAI Y, FANG Y, et al.

Suppressed ion migration in low-dimensional perovskites

ACS Energy Lett., 2017, 2(7): 1571.

DOI      URL     [本文引用: 4]

ZHENG X, ZHAO W, WANG P, et al.

Ultrasensitive and stable X-ray detection using zero-dimensional lead-free perovskites

J. Energy Chem., 2020, 49: 299.

DOI      [本文引用: 8]

Sensitive and reliable X-ray detectors are essential for medical radiography,industrial inspection and security screening.Lowering the radiation dose allows reduced health risks and increased frequency and fidelity of diagnostic technologies for earlier detection of disease and its recurrence.Three-dimensional (3D) organic-inorganic hybrid lead halide perovskites are promising for direct X-ray detection-they show improved sensitivity compared to conventional X-ray detectors.However,their high and unstable dark current,caused by ion migration and high dark carrier concentration in the 3D hybrid perovskites,limits their performance and long-term operation stability.Here we report ultrasensitive,stable X-ray detectors made using zero-dimensional (0D) methylammonium bismuth iodide perovskite (MA<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub>) single crystals.The 0D crystal structure leads to a high activation energy (<i>E</i><sub>a</sub>) for ion migration (0.46 eV) and is also accompanied by a low dark carrier concentration (~10<sup>6</sup> cm<sup>-3</sup>).The X-ray detectors exhibit sensitivity of 10,620 μC Gy<sub>air</sub><sup>-1</sup> cm<sup>-2</sup>,a limit of detection (LoD) of 0.62 nGy<sub>air</sub> s<sup>-1</sup>,and stable operation even under high applied biases;no deterioration in detection performance was observed following sensing of an integrated X-ray irradiation dose of ~23,800 mGy<sub>air</sub>,equivalent to >200,000 times the dose required for a single commercial X-ray chest radiograph.Regulating the ion migration channels and decreasing the dark carrier concentration in perovskites provide routes for stable and ultrasensitive X-ray detectors.

ZHANG M, XIN D, DONG S, et al.

Methylamine-assisted preparation of Ruddlesden-Popper perovskites for stable detection and imaging of X-rays

Adv. Opt. Mater., 2022, 10(23): 2201548.

DOI      URL     [本文引用: 6]

XU X, QIAN W, WANG J, et al.

Sequential growth of 2D/3D double-layer perovskite films with superior X-ray detection performance

Adv. Sci., 2021, 8(21): 2102730.

DOI      URL     [本文引用: 1]

ZHANG Y, LIU Y, XU Z, et al.

Nucleation-controlled growth of superior lead-free perovskite Cs3Bi2I9 single-crystals for high-performance X-ray detection

Nat. Commun., 2020, 11: 2304.

DOI      [本文引用: 6]

The organic-inorganic hybrid lead halide perovskites have emerged as a series of star materials for solar cells, lasers and detectors. However, the issues raised by the toxic lead element and marginal stability due to the volatile organic components have severely limited their potential applications. In this work, we develop a nucleation-controlled solution method to grow large size high-quality Cs3Bi2I9 perovskite single crystals (PSCs). Using the technique, we harvest some centimeter-sized single crystals and achieved high device performance. We find that X-ray detectors based on PSCs exhibit high sensitivity of 1652.3 μC Gyair−1 cm−2 and very low detectable dose rate of 130 nGyair s−1, both desired in medical diagnostics. In addition, its outstanding thermal stability inspires us to develop a high temperature X-ray detector with stable response at up to 100 °C. Furthermore, PSCs exhibit high X-ray imaging capability thanks to its negligible signal drifting and extremely high stability.

ZHUANG R, WANG X, MA W, et al.

Highly sensitive X-ray detector made of layered perovskite-like (NH4)3Bi2I9 single crystal with anisotropic response

Nat. Photonics, 2019, 13: 602.

DOI      [本文引用: 6]

AZMI R, UGUR E, SEITKHAN A, et al.

Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions

Science, 2022, 376(6588): 73.

DOI      URL     [本文引用: 1]

If perovskite solar cells (PSCs) with high power conversion efficiencies (PCEs) are to be commercialized, they must achieve long-term stability, which is usually assessed with accelerated degradation tests. One of the persistent obstacles for PSCs has been successfully passing the damp-heat test (85°C and 85% relative humidity), which is the standard for verifying the stability of commercial photovoltaic (PV) modules. We fabricated damp heat–stable PSCs by tailoring the dimensional fragments of two-dimensional perovskite layers formed at room temperature with oleylammonium iodide molecules; these layers passivate the perovskite surface at the electron-selective contact. The resulting inverted PSCs deliver a 24.3% PCE and retain >95% of their initial value after >1000 hours at damp-heat test conditions, thereby meeting one of the critical industrial stability standards for PV modules.

JANG Y W, LEE S, YEOM K M, et al.

Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth

Nat. Energy, 2021, 6(1): 63.

DOI      [本文引用: 1]

YAO Q, XUE Q, LI Z, et al.

Graded 2D/3D perovskite heterostructure for efficient and operationally stable MA-free perovskite solar cells

Adv. Mater., 2020, 32(26): 2000571.

DOI      URL     [本文引用: 1]

WU Y, FENG J, YANG Z, et al.

Halide perovskite: a promising candidate for next-generation X-ray detectors

Adv. Sci., 2022, 10(1): 2205536.

DOI      URL     [本文引用: 3]

CHEN M, WANG C, HU W.

Organic photoelectric materials for X-ray and gamma ray detection: mechanism, material preparation and application

J. Mater. Chem. C, 2021, 9(14): 4709.

DOI      URL     [本文引用: 3]

XU X, QIAN W, XIAO S, et al.

Halide perovskites: a dark horse for direct X-ray imaging

EcoMat, 2020, 2(4): e12064.

DOI      URL     [本文引用: 5]

ROWLANDS J A.

Material change for X-ray detectors

Nature, 2017, 550(7674): 47.

DOI      URL     [本文引用: 1]

YANG B, PAN W, WU H, et al.

Heteroepitaxial passivation of Cs2AgBiBr6 wafers with suppressed ionic migration for X-ray imaging

Nat. Commun., 2019, 10: 1989.

DOI      [本文引用: 2]

X-ray detectors are broadly utilized in medical imaging and product inspection. Halide perovskites recently demonstrate excellent performance for direct X-ray detection. However, ionic migration causes large noise and baseline drift, limiting the detection and imaging performance. Here we largely eliminate the ionic migration in cesium silver bismuth bromide (Cs2AgBiBr6) polycrystalline wafers by introducing bismuth oxybromide (BiOBr) as heteroepitaxial passivation layers. Good lattice match between BiOBr and Cs2AgBiBr6 enables complete defect passivation and suppressed ionic migration. The detector hence achieves outstanding balanced performance with a signal drifting one order of magnitude lower than all previous studies, low noise (1/f noise free), a high sensitivity of 250 µC Gy air−1 cm–2, and a spatial resolution of 4.9 lp mm−1. The wafer area could be easily scaled up by the isostatic-pressing method, together with the heteroepitaxial passivation, strengthens the competitiveness of Cs2AgBiBr6-based X-ray detectors as next-generation X-ray imaging flat panels.

XIAO Y, XUE C, WANG X, et al.

Bulk heterostructure BA2PbI4/MAPbI3 perovskites for suppressed ion migration to achieve sensitive X-ray detection performance

ACS Appl. Matter. Interf., 2022, 14(49): 54867.

[本文引用: 1]

WEI H, FANG Y, MULLIGAN P, et al.

Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals

Nat. Photonics, 2016, 10(5): 333.

DOI      [本文引用: 1]

YAKUNIN S, DIRIN D N, SHYNKARENKO Y, et al.

Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites

Nat. Photonics, 2016, 10(9): 585.

DOI      [本文引用: 1]

LI L, CHEN H, FANG Z, et al.

An electrically modulated single-color/dual-color imaging photodetector

Adv. Mater., 2020, 32(24): 1907257.

DOI      URL     [本文引用: 1]

JANSEN-VAN VUUREN R D, ARMIN A, PANDEY A K, et al.

Organic photodiodes: the future of full color detection and image sensing

Adv. Mater., 2016, 28(24): 4766.

DOI      URL     [本文引用: 1]

FANG Y, HUANG J.

Resolving weak light of sub-picowatt per square centimeter by hybrid perovskite photodetectors enabled by noise reduction

Adv. Mater., 2015, 27(17): 2804.

DOI      [本文引用: 1]

Fang, Yanjun; Huang, Jinsong Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA.

PAN W, WU H, LUO J, et al.

Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit

Nat. Photonics, 2017, 11(11): 726.

DOI      URL     [本文引用: 2]

VASILEIADOU E S, WANG B, SPANOPOULOS I, et al.

Insight on the stability of thick layers in 2D Ruddlesden-Popper and Dion-Jacobson lead iodide perovskites

J. Am. Chem. Soc., 2021, 143(6): 2523.

DOI      PMID      [本文引用: 1]

Two-dimensional (2D) hybrid organic-inorganic halide perovskites are a preeminent class of low-cost semiconductors whose inherent structural tunability and attractive photophysical properties have led to the successful fabrication of solar cells with high power conversion efficiencies. Despite the observed superior stability of 2D lead iodide perovskites over their 3D parent structures, an understanding of their thermochemical profile is missing. Herein, the calorimetric studies reveal that the Ruddlesden-Popper (RP) series, incorporating the monovalent-monoammonium spacer cations of pentylammonium (PA) and hexylammonium (HA): (PA)(MA)PbI (= 2-6) and (HA)(MA)PbI (= 2-4) have a negative enthalpy of formation, relative to their binary iodides. In contrast, the enthalpy of formation for the Dion-Jacobson (DJ) series, incorporating the divalent and cyclic diammonium cations of 3- and 4-(aminomethyl)piperidinium (3AMP and 4AMP respectively): (3AMP)(MA)PbI (= 2-5) and (4AMP)(MA)PbI (= 2-4) have a positive enthalpy of formation. In addition, for the (PA)(MA)PbI family of materials, we report the phase-pure synthesis and single crystal structure of the next member of the series (PA)(MA)PbI (= 6), and its optical properties, marking this the second = 6, bulk member published to date. Particularly, (PA)(MA)PbI (= 6) has negative enthalpy of formation as well. Additionally, the analysis of the structural parameters and optical properties between the examined RP and DJ series offers guiding principles for the targeted design and synthesis of 2D perovskites for efficient solar cell fabrication. Although the distortions of the Pb-I-Pb equatorial angles are larger in the DJ series, the significantly smaller I···I interlayer distances lead to overall smaller band gap values, in comparison with the RP series. Our film stability studies on the RP and DJ perovskites series reveal consistent observations with the thermochemical findings, pointing out to the lower extrinsic stability of the DJ materials in ambient air.

DI J, CHANG J, LIU S.

Recent progress of two-dimensional lead halide perovskite single crystals: crystal growth, physical properties, and device applications

EcoMat, 2020, 2(3): e12036.

DOI      URL     [本文引用: 2]

CAO F, ZHANG P, LI L.

Multidimensional perovskite solar cells

Fundam. Res., 2022, 2(2): 237.

DOI      URL     [本文引用: 1]

SONG Y, LI L, BI W, et al.

Atomistic surface passivation of CH3NH3PbI3 perovskite single crystals for highly sensitive coplanar-structure X-ray detectors

Research, 2020, 2020: 5958243.

[本文引用: 1]

HE Y, HADAR I, KANATZIDIS M G.

Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods

Nat. Photonics, 2022, 16: 14.

DOI      [本文引用: 1]

XU Y, WANG M, LEI Y, et al.

Crystallization Kinetics in 2D perovskite solar cells

Adv. Energy Mater., 2020, 10(43): 2002558.

DOI      URL     [本文引用: 1]

LIU Y, YANG Z, LIU S.

Recent progress in single-crystalline perovskite research including crystal preparation, property evaluation, and applications

Adv. Sci., 2018, 5: 1700471.

DOI      URL     [本文引用: 1]

LI W, XIN D, TIE S, et al.

Zero-dimensional lead-free FA3Bi2I9 single crystals for high-performance X-ray detection

J. Phys. Chem. Lett., 2021, 12(7): 1778.

DOI      URL     [本文引用: 3]

WEI S, TIE S, SHEN K, et al.

High-performance X-ray detector based on liquid diffused separation induced Cs3Bi2I9 single crystal

Adv. Opt. Mater., 2021, 9(22): 2101351.

DOI      URL     [本文引用: 6]

LIU Y, XU Z, YANG Z, et al.

Inch-size 0D-structured lead-free perovskite single crystals for highly sensitive stable X-ray imaging

Matter, 2020, 3(1): 180.

DOI      URL     [本文引用: 5]

XU Q, LI C, NIE J, et al.

Highly sensitive and stable X-ray detector based on a 0D structural Cs4PbI6 single crystal

J. Phys. Chem. Lett., 2021, 12(1): 287.

DOI      URL     [本文引用: 2]

MOHAN R.

Green bismuth

Nat. Chem., 2010, 2(4): 336.

DOI      PMID      [本文引用: 1]

TAO K, LI Y, JI C, et al.

A lead-free hybrid iodide with quantitative response to X-ray radiation

Chem. Mater., 2019, 31(15): 5927.

DOI      [本文引用: 3]

Single crystals of lead halide hybrid perovskites (e. g., CH3NH3PbI3 and CsPbBr3) have been developed as promising candidates for X-ray detection, owing to their excellent attributes including low trap density, high X-ray absorption cross section, and high carrier mobility. The toxicity of lead, however, is a potential bottleneck that hinders their device application toward green and sustainable competitors. Herein, we reported a new lead-free bismuth-iodide hybrid of (H(2)MDAP)BiI5 (1, H(2)MDAP = N-methyl-1,3-diaminopropanium), adopting one-dimensional (1D) metal-halogen frameworks, which behaves as a potential alternative for X-ray detection. Large-size single crystals of 1 with sizes up to 9 x 7 x 4 mm(3) were successfully grown via top-seeded solution growth method. The as-grown crystal exhibits notable semiconducting properties, including a narrow bandgap of 1.83 eV, trap density of 3.6 x 10(11)cm(-3), carrier mobility of 1.42 cm(2)V(-1)s(-1), and high X-ray absorption coefficient. Consequently, the fabricated crystal-based X-ray photoconductor enables the conversion of X-ray to electrical signals with a sensitivity of, similar to 1.0 mu C Gy(air)(-1) cm(-2). These results throw light on further exploration on X-ray-sensitive materials based on the lead-free metal halogen hybrids.

YAO L, NIU G, YIN L, et al.

Bismuth halide perovskite derivatives for direct X-ray detection

J. Mater. Chem. C, 2020, 8(4): 1239.

DOI      URL     [本文引用: 3]

ZHANG B-B, XIAO B, DONG S, et al.

The preparation and characterization of quasi-one-dimensional lead based perovskite CsPbI3 crystals from HI aqueous solutions

J. Cryst. Growth, 2018, 498: 1.

DOI      URL     [本文引用: 2]

ZHANG B B, LIU X, XIAO B, et al.

High-performance X-ray detection based on one-dimensional inorganic halide perovskite CsPbI3

J. Phys. Chem. Lett., 2020, 11(2): 432.

DOI      URL     [本文引用: 1]

XIA M, YUAN J H, NIU G, et al.

Unveiling the structural descriptor of A3B2X9 perovskite derivatives toward X-ray detectors with low detection limit and high stability

Adv. Funct. Mater., 2020, 30(24): 1910648.

DOI      URL     [本文引用: 2]

LIANG C, GU H, XIA Y, et al.

Two-dimensional Ruddlesden-Popper layered perovskite solar cells based on phase-pure thin films

Nat. Energy, 2021, 6(1): 38.

DOI      [本文引用: 1]

LI X, HOFFMAN J M, KANATZIDIS M G.

The 2D halide perovskite rulebook: how the spacer influences everything from the structure to optoelectronic device efficiency

Chem. Rev., 2021, 121(4): 2230.

DOI      PMID      [本文引用: 3]

Two-dimensional (2D) halide perovskites have emerged as outstanding semiconducting materials thanks to their superior stability and structural diversity. However, the ever-growing field of optoelectronic device research using 2D perovskites requires systematic understanding of the effects of the spacer on the structure, properties, and device performance. So far, many studies are based on trial-and-error tests of random spacers with limited ability to predict the resulting structure of these synthetic experiments, hindering the discovery of novel 2D materials to be incorporated into high-performance devices. In this review, we provide guidelines on successfully choosing spacers and incorporating them into crystalline materials and optoelectronic devices. We first provide a summary of various synthetic methods to act as a tutorial for groups interested in pursuing synthesis of novel 2D perovskites. Second, we provide our insights on what kind of spacer cations can stabilize 2D perovskites followed by an extensive review of the spacer cations, which have been shown to stabilize 2D perovskites with an emphasis on the effects of the spacer on the structure and optical properties. Next, we provide a similar explanation for the methods used to fabricate films and their desired properties. Like the synthesis section, we will then focus on various spacers that have been used in devices and how they influence the film structure and device performance. With a comprehensive understanding of these effects, a rational selection of novel spacers can be made, accelerating this already exciting field.

YUKTA, GHOSH J, AFROZ M A, et al.

Efficient and highly stable X-ray detection and imaging using 2D (BA)2PbI4 perovskite single crystals

ACS Photonics, 2022, 9(11): 3529.

DOI      URL     [本文引用: 3]

SMITH M D, CONNOR B A, KARUNADASA H I.

Tuning the luminescence of layered halide perovskites

Chem. Rev., 2019, 119(5): 3104.

DOI      PMID      [本文引用: 1]

Layered halide perovskites offer a versatile platform for manipulating light through synthetic design. Although most layered perovskites absorb strongly in the ultraviolet (UV) or near-UV region, their emission can range from the UV to the infrared region of the electromagnetic spectrum. This emission can be very narrow, displaying high color purity, or it can be extremely broad, spanning the entire visible spectrum and providing high color rendition (or accurately reproducing illuminated colors). The origin of the photoluminescence can vary enormously. Strongly correlated electron-hole pairs, permanent lattice defects, transient light-induced defects, and ligand-field transitions in the inorganic layers and molecular chromophores in the organic layers can be involved in the emission mechanism. In this review, we highlight the different types of photoluminescence that may be attained from layered halide perovskites, with an emphasis on how the emission may be systematically tuned through changes to the bulk crystalline lattice: changes in composition, structure, and dimensionality.

LI H, SONG J, PAN W, et al.

Sensitive and stable 2D perovskite single-crystal X-ray detectors enabled by a supramolecular anchor

Adv. Mater., 2020, 32(40): 2003790.

DOI      URL     [本文引用: 3]

QIAN C X, WANG M Z, LU S S, et al.

Fabrication of 2D perovskite (PMA)2PbI4 crystal and Cu ion implantation improved X-ray detector

Appl. Phys. Lett., 2022, 120(1): 011901.

DOI      URL     [本文引用: 2]

Two-dimensional (2D) perovskites have been demonstrated great promise in x-ray detection application because of their stability, tunability, and the unique electronic properties. The centimeter-sized 2D perovskite (PMA)2PbI4 single crystal and the corresponding x-ray detector were fabricated. The Cu ion implanted device exhibits an excellent sensitivity of 283 μC Gyair−1 cm−2, the significantly enhanced mobility-lifetime (μτ) product of 8.05 × 10−3 cm2 V−1, and the lowest detectable dose rate of 2.13 μGyair s−1. Experimental observation combined with the DFT calculations shows that the improvement in Cu ion implanted x-ray detection is ascribed to the enhanced photoinduced charge carrier density and μτ product, and the increased carrier dissociation capability associated deeply with the decreased binding energy of exciton in the inorganic layer quasi-quantum well. The incorporation of the Cu interstitials by high-energy Cu ion implantation is able to introduce the donor and acceptor states with additional charge transfer channeling, resulting in the decreased exciton binding energy and fast dissociation of the exciton and the quick carrier extraction. Cu ion implantation regulating the dissociation of charge carriers in low-dimensional perovskites will motivate the application for 2D perovskite in high-performance x-ray detectors.

XIAO B, SUN Q, WANG F, et al.

Towards superior X-ray detection performance of two-dimensional halide perovskite crystals by adjusting the anisotropic transport behavior

J. Mater. Chem. A, 2021, 9(22): 13209.

DOI      URL     [本文引用: 2]

JI C, WANG S, WANG Y, et al.

2D hybrid perovskite ferroelectric enables highly sensitive X-ray detection with low driving voltage

Adv. Funct. Mater., 2020, 30(5): 1905529.

DOI      URL     [本文引用: 2]

JI C, LI Y, LIU X, et al.

Monolayer-to-multilayer dimensionality reconstruction in a hybrid perovskite for exploring the bulk photovoltaic effect enables passive X-ray detection

Angew. Chem. Int. Ed., 2021, 60(38): 20970.

DOI      URL     [本文引用: 3]

LIU X, WANG S, LONG P, et al.

Polarization-driven self-powered photodetection in a pingle-phase biaxial hybrid perovskite ferroelectric

Angew. Chem. Int. Ed., 2019, 58(41): 14504.

DOI      URL     [本文引用: 1]

SHEN Y, LIU Y, YE H, et al.

Centimeter-sized single crystal of two-dimensional halide perovskites incorporating straight-chain symmetric diammonium ion for X-ray detection

Angew. Chem. Int. Ed., 2020, 59(35): 14896.

DOI      URL     [本文引用: 2]

XIAO B, SUN Q, WANG S, et al.

Two-dimensional Dion-Jacobson perovskite (NH3C4H8NH3)CsPb2Br7 with high X-ray sensitivity and peak discrimination of α-particles

J. Phys. Chem. Lett., 2022, 13(5): 1187.

DOI      URL     [本文引用: 2]

LI X, KE W, TRAORÉ B, et al.

Two-dimensional Dion-Jacobson hybrid lead iodide perovskites with aromatic diammonium cations

J. Am. Chem. Soc., 2019, 141(32): 12880.

DOI      PMID      [本文引用: 1]

Two-dimensional (2D) halide perovskites have extraordinary optoelectronic properties and structural tunability. Among them, the Dion-Jacobson phases with the inorganic layers stacking exactly on top of each other are less explored. Herein, we present the new series of 2D Dion-Jacobson halide perovskites, which adopt the general formula of A'APbI (A' = 4-(aminomethyl)pyridinium (4AMPY), A = methylammonium (MA), = 1-4). By modifying the position of the CHNH group from 4AMPY to 3AMPY (3AMPY = 3-(aminomethyl)pyridinium), the stacking of the inorganic layers changes from exactly eclipsed to slightly offset. The perovskite octahedra tilts are also different between the two series, with the 3AMPY series exhibiting smaller bandgaps than the 4AMPY series. Compared to the aliphatic cation of the same size (AMP = (aminomethyl)piperidinium), the aromatic spacers increase the rigidity of the cation, reduce the interlayer spacing, and decrease the dielectric mismatch between inorganic layer and the organic spacer, showing the indirect but powerful influence of the organic cations on the structure and consequently on the optical properties of the perovskite materials. All A'APbI compounds exhibit strong photoluminescence (PL) at room temperature. Preliminary solar cell devices based on the = 4 perovskites as absorbers of both series exhibit promising performances, with a champion power conversion efficiency (PCE) of 9.20% for (3AMPY)(MA)PbI-based devices, which is higher than the (4AMPY)(MA)PbI and the corresponding aliphatic analogue (3AMP)(MA)PbI-based ones.

FU D, HOU Z, HE Y, et al.

Formamidinium perovskitizers and aromatic spacers synergistically building bilayer Dion-Jacobson perovskite photoelectric bulk crystals

ACS Appl. Matter. Interf., 2022, 14(9): 11690.

[本文引用: 2]

KIM Y C, KIM K H, SON D Y, et al.

Printable organometallic perovskite enables large-area, low-dose X-ray imaging

Nature, 2017, 550(7674): 87.

DOI      URL     [本文引用: 1]

TIE S, ZHAO W, XIN D, et al.

Robust fabrication of hybrid lead-free perovskite pellets for stable X-ray detectors with low detection limit

Adv. Mater., 2020, 32(31): 2001981.

DOI      URL     [本文引用: 2]

XIN D, DONG S, ZHANG M, et al.

Nucleation engineering in sprayed MA3Bi2I9 films for direct-conversion X-ray detectors

J. Phys. Chem. Lett., 2022, 13(1): 371.

DOI      URL     [本文引用: 2]

DONG S, XIN D, ZHANG M, et al.

Green solvent blade-coated MA3Bi2I9 for direct-conversion X-ray detectors

J. Mater. Chem. C, 2022, 10: 6236.

DOI      URL     [本文引用: 2]

High quality MA3Bi2I9 films were prepared by a cost effective, scalable and green solvent blade-coating process. An X-ray detector with outstanding detection performance was obtained.

LIU X M, LI H J, CUI Q Y, et al.

Molecular doping of flexible lead-free perovskite-polymer thick membranes for high-performance X-ray detection

Angew. Chem. Int. Ed., 2022, 61(41): e202209320.

DOI      URL     [本文引用: 2]

CHEN H, AN B, PENG G, et al.

High-quality 0D Cs4PbBr6-based dense wafer for high-sensitivity X-ray detection and high-resolution imaging in harsh environment

Adv. Opt. Mater., 2022, 11(1): 2202157.

DOI      URL     [本文引用: 2]

XU Y, JIAO B, SONG T-B, et al.

Zero-dimensional Cs2TeI6 perovskite: solution-processed thick films with high X-ray sensitivity

ACS Photonics, 2019, 6(1): 196.

DOI      URL     [本文引用: 2]

PENG J, XU Y, YAO F, et al.

Ion-exchange-induced slow crystallization of 2D-3D perovskite thick junctions for X-ray detection and imaging

Matter, 2022, 5(7): 2251.

DOI      URL     [本文引用: 3]

HE X, XIA M, WU H, et al.

Quasi-2D perovskite thick film for X-ray detection with low detection limit

Adv. Funct. Mater., 2022, 32(7): 2109458.

DOI      URL     [本文引用: 3]

JI R, ZHANG Z, HOFSTETTER Y J, et al.

Perovskite phase heterojunction solar cells

Nat. Energy, 2022, 7: 1170.

DOI      [本文引用: 1]

Modern photovoltaic devices are often based on a heterojunction structure where two components with different optoelectronic properties are interfaced. The properties of each side of the junction can be tuned by either utilizing different materials (for example, donor/acceptor) or doping (for example, p–n junction) or even varying their dimensionality (for example, 3D/2D). Here we demonstrate the concept of phase heterojunction (PHJ) solar cells by utilizing two polymorphs of the same material. We demonstrate the approach by forming γ-CsPbI3/β-CsPbI3 perovskite PHJ solar cells. We find that all of the photovoltaic parameters of the PHJ device significantly surpass those of each of the single-phase devices, resulting in a maximum power conversion efficiency of 20.1%. These improvements originate from the efficient passivation of the β-CsPbI3 by the larger bandgap γ-CsPbI3, the increase in the built-in potential of the PHJ devices enabled by the energetic alignment between the two phases and the enhanced absorption of light by the PHJ structure. The approach demonstrated here offers new possibilities for the development of photovoltaic devices based on polymorphic materials.

JIN P, TANG Y, LI D, et al.

Realizing nearly-zero dark current and ultrahigh signal-to-noise ratio perovskite X-ray detector and image array by dark-current-shunting strategy

Nat. Commun., 2023, 14: 626.

DOI      PMID      [本文引用: 1]

Although perovskite X-ray detectors have revealed promising properties, their dark currents are usually hundreds of times larger than the practical requirements. Here, we report a detector architecture with a unique shunting electrode working as a blanking unit to suppress dark current, and it theoretically can be reduced to zero. We experimentally fabricate the dark-current-shunting X-ray detector, which exhibits a record-low dark current of 51.1 fA at 5 V mm, a detection limit of 7.84 nGy s, and a sensitivity of 1.3 × 10 μC Gy cm. The signal-to-noise ratio of our polycrystalline perovskite-based detector is even outperforming many previously reported state-of-the-art single crystal-based X-ray detectors by serval orders of magnitude. Finally, the proof-of-concept X-ray imaging of a 64 × 64 pixels dark-current-shunting detector array is successfully demonstrated. This work provides a device strategy to fundamentally reduce dark current and enhance the signal-to-noise ratio of X-ray detectors and photodetectors in general.© 2023. The Author(s).

/