Journal of Inorganic Materials ›› 2023, Vol. 38 ›› Issue (3): 357-362.DOI: 10.15541/jim20220504
• RESEARCH LETTER • Previous Articles Next Articles
QIAN Xinyu1,2(), WANG Wudi2, SONG Qingsong2, DONG Yongjun4, XUE Yanyan2, ZHANG Chenbo2, WANG Qingguo2, XU Xiaodong3, TANG Huili2, CAO Guixin1, XU Jun2()
Received:
2022-08-26
Revised:
2022-10-22
Published:
2022-12-30
Online:
2022-12-30
Contact:
XU Jun, professor. E-mail: xujun@mail.shcnc.ac.cnAbout author:
QIAN Xinyu (1998-), male, Master candidate. E-mail: 894742295@qq.com
Supported by:
CLC Number:
QIAN Xinyu, WANG Wudi, SONG Qingsong, DONG Yongjun, XUE Yanyan, ZHANG Chenbo, WANG Qingguo, XU Xiaodong, TANG Huili, CAO Guixin, XU Jun. Luminescence Property and Judd-Ofelt Analysis of 0.6%Pr, x%La:CaF2 Crystals[J]. Journal of Inorganic Materials, 2023, 38(3): 357-362.
Fig. 5 Fluorescence decay lifetime of 3P0 energy of 0.6%Pr, x%La:CaF2 crystals at room temperature (a) x=0; (b) x=3; (c) x=10; (d) x=18; Colorful figure is available on website
Crystal | Initial concentration/%(in atomic) | Actual concentration/%(in atomic) | Segregation coefficient | |||
---|---|---|---|---|---|---|
Pr3+ | La3+ | Pr3+ | La3+ | Pr3+ | La3+ | |
Pr,La:CaF2 | 0.60 | 0.00 | 0.53 | 0.00 | 0.88 | - |
0.60 | 3.00 | 0.52 | 3.06 | 0.86 | 1.02 | |
0.60 | 10.00 | 0.53 | 8.59 | 0.89 | 0.86 | |
0.60 | 18.00 | 0.47 | 15.49 | 0.79 | 0.86 |
Table S1 Actual concentration of Pr3+ and La3+ ions in CaF2 crystals
Crystal | Initial concentration/%(in atomic) | Actual concentration/%(in atomic) | Segregation coefficient | |||
---|---|---|---|---|---|---|
Pr3+ | La3+ | Pr3+ | La3+ | Pr3+ | La3+ | |
Pr,La:CaF2 | 0.60 | 0.00 | 0.53 | 0.00 | 0.88 | - |
0.60 | 3.00 | 0.52 | 3.06 | 0.86 | 1.02 | |
0.60 | 10.00 | 0.53 | 8.59 | 0.89 | 0.86 | |
0.60 | 18.00 | 0.47 | 15.49 | 0.79 | 0.86 |
0.6%Pr,3%La:CaF2 | 0.6%Pr,10%La:CaF2 | 0.6%Pr,18%La:CaF2 | |||||||
---|---|---|---|---|---|---|---|---|---|
λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | |
3P2 | 443 | 1.848 | 0.267 | 443 | 1.617 | 0.209 | 443 | 2.024 | 0.269 |
3P1+1I6 | 468 | 0.367 | 0.214 | 468 | 0.376 | 0.238 | 468 | 0.451 | 0.240 |
3P0 | 483 | 0.145 | 0.130 | 483 | 0.119 | 0.150 | 482 | 0.240 | 0.150 |
1D2 | 591 | 0.526 | 0.136 | 590 | 0.580 | 0.111 | 590 | 0.461 | 0.138 |
1G4 | 1011 | 0.194 | 0.027 | 997 | 0.205 | 0.024 | 991 | 0.140 | 0.028 |
3F4 | 1443 | 0.699 | 1.011 | 1442 | 0.714 | 0.788 | 1437 | 0.820 | 1.016 |
3F3 | 1550 | 2.291 | 1.657 | 1554 | 1.727 | 1.420 | 1551 | 2.300 | 1.706 |
3F2 | 1945 | 1.161 | 0.834 | 1920 | 1.528 | 1.377 | 1936 | 1.380 | 1.021 |
3H6 | 2250 | 0.406 | 0.296 | 2252 | 0.391 | 0.230 | 2257 | 0.334 | 0.298 |
RMS ΔS/(×10-20, cm2) | 0.744 | 0.290 | 0.793 |
Table S2 Average wavelength λ, absorption line strength Sexp(J, Jʹ) and calculated line strength Scal(J, Jʹ)
0.6%Pr,3%La:CaF2 | 0.6%Pr,10%La:CaF2 | 0.6%Pr,18%La:CaF2 | |||||||
---|---|---|---|---|---|---|---|---|---|
λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | λ/nm | Sexp/ (×10-20, cm2) | Scal/ (×10-20, cm2) | |
3P2 | 443 | 1.848 | 0.267 | 443 | 1.617 | 0.209 | 443 | 2.024 | 0.269 |
3P1+1I6 | 468 | 0.367 | 0.214 | 468 | 0.376 | 0.238 | 468 | 0.451 | 0.240 |
3P0 | 483 | 0.145 | 0.130 | 483 | 0.119 | 0.150 | 482 | 0.240 | 0.150 |
1D2 | 591 | 0.526 | 0.136 | 590 | 0.580 | 0.111 | 590 | 0.461 | 0.138 |
1G4 | 1011 | 0.194 | 0.027 | 997 | 0.205 | 0.024 | 991 | 0.140 | 0.028 |
3F4 | 1443 | 0.699 | 1.011 | 1442 | 0.714 | 0.788 | 1437 | 0.820 | 1.016 |
3F3 | 1550 | 2.291 | 1.657 | 1554 | 1.727 | 1.420 | 1551 | 2.300 | 1.706 |
3F2 | 1945 | 1.161 | 0.834 | 1920 | 1.528 | 1.377 | 1936 | 1.380 | 1.021 |
3H6 | 2250 | 0.406 | 0.296 | 2252 | 0.391 | 0.230 | 2257 | 0.334 | 0.298 |
RMS ΔS/(×10-20, cm2) | 0.744 | 0.290 | 0.793 |
Crystal | Ω2/(×10-20, cm2) | Ω4/(×10-20, cm2) | Ω6/(×10-20, cm2) | Ω4/Ω6 | Ref. |
---|---|---|---|---|---|
0.6%Pr,3%La:CaF2 | 0.59 | 0.76 | 1.94 | 0.39 | This work |
0.6%Pr,10%La:CaF2 | 1.68 | 0.88 | 1.44 | 0.61 | |
0.6%Pr,18%La:CaF2 | 0.87 | 0.87 | 1.93 | 0.45 | |
LaF3 | 0.72 | 0.39 | 4.79 | 0.08 | [ |
CaF2 | 1.15 | 3.60 | 10.00 | 0.36 | [ |
LYF4 | 3.45 | 3.94 | 6.13 | 0.64 | [ |
BaY2F8 | 1.09 | 3.49 | 2.22 | 1.57 | [ |
KYF4 | 3.92 | 1.78 | 7.94 | 0.22 | [ |
CaYAlO4 | 5.67 | 8.09 | 14.90 | 0.54 | [ |
YAlO3 | 2.28 | 3.88 | 5.15 | 0.75 | [ |
Y3Al5O12 | 0.00 | 12.20 | 8.17 | 1.49 | [ |
SrAl11O19 | 0.84 | 2.19 | 6.86 | 0.32 | [ |
Table S3 J-O intensity parameters of Pr,La:CaF2 crystals and other crystals
Crystal | Ω2/(×10-20, cm2) | Ω4/(×10-20, cm2) | Ω6/(×10-20, cm2) | Ω4/Ω6 | Ref. |
---|---|---|---|---|---|
0.6%Pr,3%La:CaF2 | 0.59 | 0.76 | 1.94 | 0.39 | This work |
0.6%Pr,10%La:CaF2 | 1.68 | 0.88 | 1.44 | 0.61 | |
0.6%Pr,18%La:CaF2 | 0.87 | 0.87 | 1.93 | 0.45 | |
LaF3 | 0.72 | 0.39 | 4.79 | 0.08 | [ |
CaF2 | 1.15 | 3.60 | 10.00 | 0.36 | [ |
LYF4 | 3.45 | 3.94 | 6.13 | 0.64 | [ |
BaY2F8 | 1.09 | 3.49 | 2.22 | 1.57 | [ |
KYF4 | 3.92 | 1.78 | 7.94 | 0.22 | [ |
CaYAlO4 | 5.67 | 8.09 | 14.90 | 0.54 | [ |
YAlO3 | 2.28 | 3.88 | 5.15 | 0.75 | [ |
Y3Al5O12 | 0.00 | 12.20 | 8.17 | 1.49 | [ |
SrAl11O19 | 0.84 | 2.19 | 6.86 | 0.32 | [ |
Crystal | Transitions from 3P0 | λ/nm | Aed/S-1 | β/% | τ/μs |
---|---|---|---|---|---|
0.6%Pr:CaF2 | 3H4 | 485 | 2068.02 | 28.39 | 137.3 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 607 | 745.80 | 10.24 | ||
3F2 | 645 | 4081.31 | 56.04 | ||
3F3+3F4 | 724 | 387.93 | 5.33 | ||
0.6%Pr,3%La:CaF2 | 3H4 | 485 | 2161.59 | 43.48 | 201.1 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 1186.02 | 23.85 | ||
3F2 | 644 | 1220.94 | 24.56 | ||
3F3+3F4 | 725 | 403.47 | 8.11 | ||
0.6%Pr,10%La:CaF2 | 3H4 | 485 | 8357.08 | 34.01 | 136.3 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 3557.05 | 11.95 | ||
3F2 | 644 | 4803.69 | 47.68 | ||
3F3+3F4 | 725 | 1562.94 | 6.36 | ||
0.6%Pr,18%La:CaF2 | 3H4 | 485 | 559.00 | 41.82 | 168.9 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 3642.46 | 19.80 | ||
3F2 | 644 | 769.30 | 30.55 | ||
3F3+3F4 | 725 | 104.56 | 7.82 |
Table S4 Radiative transition rates A, fluorescence branching ratio β and radiation lifetime τ
Crystal | Transitions from 3P0 | λ/nm | Aed/S-1 | β/% | τ/μs |
---|---|---|---|---|---|
0.6%Pr:CaF2 | 3H4 | 485 | 2068.02 | 28.39 | 137.3 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 607 | 745.80 | 10.24 | ||
3F2 | 645 | 4081.31 | 56.04 | ||
3F3+3F4 | 724 | 387.93 | 5.33 | ||
0.6%Pr,3%La:CaF2 | 3H4 | 485 | 2161.59 | 43.48 | 201.1 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 1186.02 | 23.85 | ||
3F2 | 644 | 1220.94 | 24.56 | ||
3F3+3F4 | 725 | 403.47 | 8.11 | ||
0.6%Pr,10%La:CaF2 | 3H4 | 485 | 8357.08 | 34.01 | 136.3 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 3557.05 | 11.95 | ||
3F2 | 644 | 4803.69 | 47.68 | ||
3F3+3F4 | 725 | 1562.94 | 6.36 | ||
0.6%Pr,18%La:CaF2 | 3H4 | 485 | 559.00 | 41.82 | 168.9 |
3H5 | 532 | 0.00 | 0.00 | ||
3H6 | 608 | 3642.46 | 19.80 | ||
3F2 | 644 | 769.30 | 30.55 | ||
3F3+3F4 | 725 | 104.56 | 7.82 |
Concentration of La3+ ion | Transition | λem/nm | FWHM/nm | σem/(×10-20, cm2) |
---|---|---|---|---|
0.6%Pr:CaF2 | 3P0→3H4 | 482 | 5.20 | 0.77 |
3P0→3H5 | 535 | 26.68 | 0.00 | |
3P0→3H6 | 605 | 15.84 | 1.14 | |
3P0→3F2 | 640 | 5.13 | 0.96 | |
3P0→3F3+3F4 | 723 | 4.51 | 0.59 | |
0.6%Pr,3%La:CaF2 | 3P0→3H4 | 484 | 6.76 | 1.96 |
3P0→3H5 | 537 | 27.45 | 0.00 | |
3P0→3H6 | 599 | 15.30 | 1.35 | |
3P0→3F2 | 640 | 3.12 | 1.51 | |
3P0→3F3+3F4 | 723 | 5.21 | 2.48 | |
0.6%Pr,10%La:CaF2 | 3P0→3H4 | 484 | 8.36 | 2.52 |
3P0→3H5 | 535 | 26.76 | 0.00 | |
3P0→3H6 | 599 | 16.98 | 1.36 | |
3P0→3F2 | 640 | 3.80 | 3.18 | |
3P0→3F3+3F4 | 723 | 5.49 | 3.03 | |
0.6%Pr,18%La:CaF2 | 3P0→3H4 | 482 | 9.57 | 1.22 |
3P0→3H5 | 537 | 26.25 | 0.00 | |
3P0→3H6 | 606 | 18.53 | 1.24 | |
3P0→3F2 | 640 | 3.80 | 2.92 | |
3P0→3F3+3F4 | 723 | 7.38 | 1.40 |
Table S5 Peak wavelength λ, FWHM and stimulated emission cross section σem
Concentration of La3+ ion | Transition | λem/nm | FWHM/nm | σem/(×10-20, cm2) |
---|---|---|---|---|
0.6%Pr:CaF2 | 3P0→3H4 | 482 | 5.20 | 0.77 |
3P0→3H5 | 535 | 26.68 | 0.00 | |
3P0→3H6 | 605 | 15.84 | 1.14 | |
3P0→3F2 | 640 | 5.13 | 0.96 | |
3P0→3F3+3F4 | 723 | 4.51 | 0.59 | |
0.6%Pr,3%La:CaF2 | 3P0→3H4 | 484 | 6.76 | 1.96 |
3P0→3H5 | 537 | 27.45 | 0.00 | |
3P0→3H6 | 599 | 15.30 | 1.35 | |
3P0→3F2 | 640 | 3.12 | 1.51 | |
3P0→3F3+3F4 | 723 | 5.21 | 2.48 | |
0.6%Pr,10%La:CaF2 | 3P0→3H4 | 484 | 8.36 | 2.52 |
3P0→3H5 | 535 | 26.76 | 0.00 | |
3P0→3H6 | 599 | 16.98 | 1.36 | |
3P0→3F2 | 640 | 3.80 | 3.18 | |
3P0→3F3+3F4 | 723 | 5.49 | 3.03 | |
0.6%Pr,18%La:CaF2 | 3P0→3H4 | 482 | 9.57 | 1.22 |
3P0→3H5 | 537 | 26.25 | 0.00 | |
3P0→3H6 | 606 | 18.53 | 1.24 | |
3P0→3F2 | 640 | 3.80 | 2.92 | |
3P0→3F3+3F4 | 723 | 7.38 | 1.40 |
Crystal | Transition | FWHM/nm | σem/(×10-20, cm2) | τ/μs | σem·τf/(×10-20, cm2·μs) | Ref. |
---|---|---|---|---|---|---|
0.6%Pr:CaF2 | 3P0→3H6 | 15.84 | 1.14 | 45.30 | 51.65 | This work |
3P0→3F2 | 5.13 | 0.96 | 43.53 | |||
0.6%Pr,3%La:CaF2 | 3P0→3H6 | 15.3 | 1.35 | 45.33 | 61.20 | |
3P0→3F2 | 3.12 | 1.51 | 68.65 | |||
0.6%Pr,10%La:CaF2 | 3P0→3H6 | 16.98 | 1.36 | 45.82 | 62.32 | |
3P0→3F2 | 3.80 | 3.18 | 145.79 | |||
0.6%Pr,18%La:CaF2 | 3P0→3H6 | 18.53 | 1.24 | 39.75 | 49.29 | |
3P0→3F2 | 3.80 | 2.92 | 116.10 | |||
LaF3 | 3P0→3H6 | 3 | 3.3 | 51.42 | 169.67 | [ |
3P0→3F2 | 7.7 | 7.56 | 388.70 | |||
LuLiF4 | 3P0→3H6 | 1.2 | 12 | 37.90 | 454.80 | [ |
3P0→3F2 | 0.7 | 21 | 795.90 | |||
YLiF4 | 3P0→3H6 | 1.4 | 14 | 35.70 | 499.80 | [ |
3P0→3F2 | 0.7 | 22 | 785.40 | |||
GdLiF4 | 3P0→3H6 | 1.3 | 13 | 43.61 | 566.91 | [ |
3P0→3F2 | - | 23 | 1003.00 | |||
BaY2F8 | 3P0→3H6 | 1.2 | 24.7 | 43.00 | 1062.10 | [ |
3P0→3F2 | 0.6 | 12.1 | 520.30 |
Table S6 Wavelength λ, FWHM, stimulated emission cross section σem and spectral quality factor σem·τf for the transition of 3P0→3H6 and 3P0→3F2 of Pr,La:CaF2 and other crystals
Crystal | Transition | FWHM/nm | σem/(×10-20, cm2) | τ/μs | σem·τf/(×10-20, cm2·μs) | Ref. |
---|---|---|---|---|---|---|
0.6%Pr:CaF2 | 3P0→3H6 | 15.84 | 1.14 | 45.30 | 51.65 | This work |
3P0→3F2 | 5.13 | 0.96 | 43.53 | |||
0.6%Pr,3%La:CaF2 | 3P0→3H6 | 15.3 | 1.35 | 45.33 | 61.20 | |
3P0→3F2 | 3.12 | 1.51 | 68.65 | |||
0.6%Pr,10%La:CaF2 | 3P0→3H6 | 16.98 | 1.36 | 45.82 | 62.32 | |
3P0→3F2 | 3.80 | 3.18 | 145.79 | |||
0.6%Pr,18%La:CaF2 | 3P0→3H6 | 18.53 | 1.24 | 39.75 | 49.29 | |
3P0→3F2 | 3.80 | 2.92 | 116.10 | |||
LaF3 | 3P0→3H6 | 3 | 3.3 | 51.42 | 169.67 | [ |
3P0→3F2 | 7.7 | 7.56 | 388.70 | |||
LuLiF4 | 3P0→3H6 | 1.2 | 12 | 37.90 | 454.80 | [ |
3P0→3F2 | 0.7 | 21 | 795.90 | |||
YLiF4 | 3P0→3H6 | 1.4 | 14 | 35.70 | 499.80 | [ |
3P0→3F2 | 0.7 | 22 | 785.40 | |||
GdLiF4 | 3P0→3H6 | 1.3 | 13 | 43.61 | 566.91 | [ |
3P0→3F2 | - | 23 | 1003.00 | |||
BaY2F8 | 3P0→3H6 | 1.2 | 24.7 | 43.00 | 1062.10 | [ |
3P0→3F2 | 0.6 | 12.1 | 520.30 |
[1] | MAIMAN T H. Stimulated optical radiation in ruby. Nature, 1960, 4736: 493. |
[2] |
LIU W, ZHANG Q, SUN D, et al. Crystal growth and spectral properties of Sm: GGG crystal. Journal of Crystal Growth, 2011, 331(1): 83.
DOI URL |
[3] |
REICHERT F, MARZAHL D T, HUBER G. Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19. Journal of the Optical Society of America B, 2014, 31(2): 349.
DOI URL |
[4] |
YU HAO, JIANG DAPENG, TANG FEI, et al. Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd3+ ions. Materials Letters, 2017, 206: 140.
DOI URL |
[5] |
CHEN B J, SHEN L F, PUN E Y B, et al. Sm 3+-doped germanate glass channel waveguide as light source for minimally invasive photodynamic therapy surgery. Optics Express, 2012, 20(2): 879.
DOI PMID |
[6] |
METZ P W, MÜLLER S, REICHERT F, et al. Wide wavelength tunability and green laser operation of diode-pumped Pr3+: KY3F10. Optics Express, 2013, 21(25): 31274.
DOI URL |
[7] |
WANG W, TIAN J, LI N, et al. Enhanced and modulated visible luminescence of Pr3+:CaF2 crystal by co-doping R3+ (R= Y, Gd, Lu) ions. Journal of Alloys and Compounds, 2021, 887: 161327.
DOI URL |
[8] |
FIBRICH M, JELÍNKOVÁ H, ŠULC J, et al. Diode-pumped Pr: YAP lasers. Laser Physics Letters, 2011, 8(8): 559.
DOI URL |
[9] |
CORNACCHIA F, RICHTER A, HEUMANN E, et al. Visible laser emission of solid state pumped LiLuF4: Pr3+. Optics Express, 2007, 15(3): 992.
DOI URL |
[10] |
PABŒUF D, MHIBIK O, BRETENAKER F, et al. Diode-pumped Pr: BaY2F8 continuous-wave orange laser. Optics Letters, 2011, 36(2): 280.
DOI URL |
[11] | KRÄNKEL C, MARZAHL D T, MOGLIA F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser & Photonics Reviews, 2016, 10(4): 548. |
[12] |
METZ P W, REICHERT F, MOGLIA F, et al. High-power red, orange, and green Pr3+: LiYF4 lasers. Optics Letters, 2014, 39(11): 3193.
DOI URL |
[13] |
SOROKIN P P, STEVENSON M J. Stimulated infrared emission from trivalent uranium. Physical Review Letters, 1960, 5(12): 557.
DOI URL |
[14] |
KAISER W, GARRETT C G B, WOOD D L. Fluorescence and optical maser effects in CaF2: Sm2+. Physical Review, 1961, 123(3): 766.
DOI URL |
[15] |
BECK W, KARASIK A, ARVANITIDIS J, et al. Spectral hole burning in CaF2-YF3:Nd3+ crystals. Journal of Luminescence, 2000, 86(3/4): 289.
DOI URL |
[16] |
KAZANSKII S A, RYSKIN A I. Clusters of group-III ions in activated fluorite-type crystals. Physics of the Solid State, 2002, 44(8): 1415.
DOI URL |
[17] |
SERRANO D, BRAUD A, DOUALAN J L, et al. Pr3+ cluster management in CaF2 by codoping with Lu3+ or Yb3+ for visible lasers and quantum down-converters. Journal of the Optical Society of America B, 2012, 29(8): 1854.
DOI URL |
[18] |
JUDD B R. Optical absorption intensities of rare-earth ions. Physical Review, 1962, 127(3): 750.
DOI URL |
[19] |
OFELT G S. Intensities of crystal spectra of rare‐earth ions. The Journal of Chemical Physics, 1962, 37(3): 511.
DOI URL |
[20] |
GUO W, LIN Y, GONG X, et al. Spectroscopic properties of Pr3+: KY(MoO4)2 crystal as a visible laser gain medium. Journal of Physics and Chemistry of Solids, 2008, 69(1): 8.
DOI URL |
[21] |
BABU P, JAYASANKAR C K. Spectroscopy of Pr3+ ions in lithium borate and lithium fluoroborate glasses. Physica B: Condensed Matter, 2001, 301(3/4): 326.
DOI URL |
[22] |
LI N, XUE Y, LI D, et al. Crystal growth, spectral properties and Judd-Ofelt analysis of Pr: LaF3. Materials Research Express, 2019, 6(11): 116209.
DOI URL |
[23] |
KHIARI S, VELAZQUEZ M, MONCORGÉ R, et al. Red-luminescence analysis of Pr3+ doped fluoride crystals. Journal of Alloys and Compounds, 2008, 451(1/2): 128.
DOI URL |
[24] |
MALINOWSKI M, WOLSKI R, WOLIŃSKI W. Absorption intensity analysis of Pr3+: Y3Al5O12. Solid State Communications, 1990, 74(1): 17.
DOI URL |
[25] |
OLIVEIRA A S, GOUVEIA E A, DE ARAUJO M T, et al. Twentyfold blue upconversion emission enhancement through thermal effects in Pr3+/Yb3+-codoped fluoroindate glasses excited at 1.064 μm. Journal of Applied Physics, 2000, 87(9): 4274.
DOI URL |
[26] | LÜ S, WANG Y, ZHU Z, et al. Spectroscopic analysis of Pr3+: CaYAlO4 crystal. Applied Physics B, 2014, 116(1): 83. |
[27] |
CHEN Y, SUN D, PENG F, et al. Growth and spectroscopic investigations of the 1.5at% Er: GSGG laser crystal. Materials Research Express, 2017, 4(9): 096202.
DOI URL |
[28] |
JIA G, WANG H, LU X, et al. Optical properties of Pr3+-doped SrWO4 crystal. Applied Physics B, 2008, 90(3): 497.
DOI URL |
[29] |
YU Y, ZHU X, ZHANG X, et al. Growth and optical properties of Pr3+: KLu(WO4)2 laser crystal: a candidate for red emission laser. Optical Review, 2016, 23(3): 391.
DOI URL |
[30] |
LIU B, SHI J, WANG Q, et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr: YAlO3. Journal of Luminescence, 2018, 196: 76.
DOI URL |
[31] |
AULL B, JENSSEN H. Vibronic interactions in Nd: YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE Journal of Quantum Electronics, 1982, 18(5): 925.
DOI URL |
[32] |
HAKIM R, DAMAK K, TONCELLI A, et al. Growth, optical spectroscopy and Judd-Ofelt analysis of Pr-doped BaY2F8 monocrystals. Journal of Luminescence, 2013, 143: 233.
DOI URL |
[33] |
CORNACCHIA F, DI LIETO A, TONELLI M, et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. Optics Express, 2008, 16(20): 15932.
PMID |
[1] | YU Chun-Feng, ZHANG Xiang-Qing, HAN Wen-Yan, ZHANG Jin-Su, LI Xiang-Ping, XU Sai, CHEN Bao-Jiu. Calculation of Judd-Ofelt Parameters for Lu2O3:Er3+ Phosphor [J]. Journal of Inorganic Materials, 2019, 34(2): 213-218. |
[2] | LI Gui-Fang, YANG Qian, WEI Yun-Ge. Synthesis and Photoluminescence Properties of Double Perovskite NaLaMgWO6: Eu3+ Red Phosphor [J]. Journal of Inorganic Materials, 2017, 32(9): 936-942. |
[3] | ZHANG Yan, WANG Guo-Fu, LIN Zhou-Bin, HU Zu-Shu. Optical Parameters of Nd3+ Ion in Sr3Gd2(BO3)4 Crystal [J]. Journal of Inorganic Materials, 2010, 25(10): 1110-1114. |
[4] | LI Jiang,YANG Zhi-Yong,WU Yu-Song,LIU Wen-Bin,PAN Yu-Bai,HUANG Li-Ping,GUO Jing-Kun. Spectroscopic Properties and Judd-Ofelt Theory Analysis of Nd:YAG Transparent Laser Ceramic [J]. Journal of Inorganic Materials, 2008, 23(3): 429-433. |
[5] | CHEN Bing-Yan,LIU Yue-Hui,CHEN Dong-Dan,JIANG Zhong-Hong. Thermal Stability and Spectroscopic Properties of Erbium-doped Tellurite Glass [J]. Journal of Inorganic Materials, 2005, 20(3): 550-556. |
[6] | ZHU Ji-Qian,HE Yun-Fen,LI Zhi-Guo. Spectrum Properties of 20GaF3-15InF3-20CdF2-15ZnF2-18PbF2-10SnF2-2TmF3 Glass [J]. Journal of Inorganic Materials, 2005, 20(2): 274-278. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||