[1] |
SUN M S, LI J F, ZHANG J C et al. The fabrication of AlN by hydride vapor phase epitaxy. Journal of Semiconductors, 2019, 40: 121803.
DOI
|
[2] |
YU R X, LIU G X, WANG G D et al. Ultrawide-bandgap semiconductor AlN crystals: growth and applications. J. Mater. Chem. C, 2021, 9: 1852.
DOI
URL
|
[3] |
YU R X, CHEN C M, ZHANG L et al. Influence of different heater structures on the temperature field of AlN crystal growth by resistance heating. Materials, 2021, 14: 7441.
DOI
URL
|
[4] |
ZHENG W, HUANG F, ZHENG R S, et al. Low-dimensional structure vacuum-ultraviolet-sensitive (λ<200 nm) photodetector with fast-response speed based on high-quality AlN micro/ nanowire. Adv. Mater., 2015, 27: 3921.
DOI
URL
|
[5] |
CHEN Z L, LIU Z Q, WEI T B, et al. Improved epitaxy of AlN film for deep-ultraviolet light-emitting diodes enabled by graphene. Adv. Mater., 2019, 31: 1807345.
DOI
URL
|
[6] |
LU T J, LIENHARD B, JEONG K Y, et al. Bright high-purity quantum emitters in aluminum nitride integrated photonics. ACS Photonics, 2020, 7: 2650.
DOI
URL
|
[7] |
LIU X H, ZHANG J C, SU X J, et al. Fabrication of crack-free AlN film on sapphire by hydride vapor phase epitaxy using an in situ etching method. Appl. Phys. Exp., 2016, 9: 045501.
DOI
|
[8] |
KATAGIRI Y, KISHINO S, OKUURA K, et al. Low-pressure HVPE growth of crack-free thick AlN on a trench-patterned AlN template. J. Cryst. Growth, 2009, 311: 2831.
DOI
URL
|
[9] |
HARTMANN C, DITTMAR A, WOLLWEBER J, et al. Bulk AlN growth by physical vapor transport. Semicond. Sci. Technol., 2014, 29: 084002.
DOI
URL
|
[10] |
ZHUANG D, HERRO Z G, SCHLEAAER R, et al. Seeded growth of AlN single crystals by physical vapor transport. J. Cryst. Growth, 2006, 287: 372.
DOI
URL
|
[11] |
GUGUSCHEV C, DITTMAR A, MOUKHINA E, et al. Growth of bulk AlN single crystals with low oxygen content taking into account thermal and kinetic effects of oxygen-related gaseous species. J. Cryst. Growth, 2012, 360: 185.
DOI
URL
|
[12] |
TANIYASU Y, KASU M, MAKIMOTO T. Electrical conduction properties of n-type Si-doped AlN with high electron mobility (>100 cm2·V-1·s-1). Appl. Phys. Lett., 2004, 85: 4672.
DOI
URL
|
[13] |
STRASSBURG M, SENAWIRATNE J, DIETZ N. The growth and optical properties of large, high-quality AlN single crystals. J. Appl. Phys., 2004, 96: 5870.
DOI
URL
|
[14] |
HARTMANN C, WOLLWEBER J, DITTMAR A, et al. Preparation of bulk AlN seeds by spontaneous nucleation of freestanding crystals. Jpn. J. Appl. Phys., 2013, 52: 08JA06.
DOI
|
[15] |
WANG G D, ZHANG L, WANG Y, et al. Effect of temperature gradient on AlN crystal growth by physical vapor transport method. Cryst. Growth Des., 2019, 19: 6736.
DOI
URL
|
[16] |
MOTAMEDI P, CADIEN K. Structural and optical characterization of low-temperature ALD crystalline AlN. J. Cryst. Growth, 2015, 421: 45.
DOI
URL
|
[17] |
HARTMANN C, MATIWE L, WOLLWEBER J, et al. Favorable growth conditions for the preparation of bulk AlN single crystals by PVT. CrystEngComm, 2020, 22: 1762.
DOI
URL
|
[18] |
COLLAZO R, XIE J, GADDY B, et al. On the origin of the 265 nm absorption band in AlN bulk crystals. Appl. Phys. Lett., 2012, 100: 191914.
DOI
URL
|
[19] |
GADDY B E, BRYAN Z, BRYAN I, et al. The role of the carbon- silicon complex in eliminating deep ultraviolet absorption in AlN. Appl. Phys. Lett., 2014, 104: 202106.
DOI
URL
|
[20] |
ZHAO L, YANG K, AI Y J, et al. Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J. Mater. Sci.: Mater. Electron., 2018, 29: 13766.
DOI
|