Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (11): 1192-1202.DOI: 10.15541/jim20220435
Special Issue: 【生物材料】肿瘤治疗
• REVIEW • Previous Articles Next Articles
ZHANG Wenjun1(), ZHAO Xueying1, LÜ Jiangwei1(), QU Youpeng2
Received:
2022-07-23
Revised:
2022-09-14
Published:
2022-09-15
Online:
2022-09-15
Contact:
LÜ Jiangwei, associate professor. E-mail: pp198259@163.comAbout author:
ZHANG Wenjun (1982-), female, PhD, associate professor. E-mail: wenjun0501@126.com
Supported by:
CLC Number:
ZHANG Wenjun, ZHAO Xueying, LÜ Jiangwei, QU Youpeng. Progresses on Hollow Periodic Mesoporous Organosilicas: Preparation and Application in Tumor Therapy[J]. Journal of Inorganic Materials, 2022, 37(11): 1192-1202.
Hard-core templating method | Liquid-interface assembly method | Interfacial reassembly and transformation method | ||
---|---|---|---|---|
Synthesis strategy | Difference | ①Using solid particles as template ②Etchant required | ①Using droplets or micelles as templates ②No etchant required | ①No sacrificial template required ②No etchant required |
Similarity | The surfactant was extracted by HCl/EtOH solution | |||
Influence factor | ①Amount and type of etchant ②Etching temperature ③SNs size and organosilicon source concentration | Stability of droplets or micelles | Hydrothermal time and temperature | |
Advantages | Easy to control cavity diameter | ①No sacrificial template required ②No etchant required ③Simple operation | ①No sacrificial template required ②No etchant required | |
Disadvantages | ①High costs ②Cumbersome operation ③Some of etchants are toxic | ①Stability of droplets or micelles should be considered | High temperature of hydrothermal process |
Table 1 Comparison of preparation methods of HPMOs
Hard-core templating method | Liquid-interface assembly method | Interfacial reassembly and transformation method | ||
---|---|---|---|---|
Synthesis strategy | Difference | ①Using solid particles as template ②Etchant required | ①Using droplets or micelles as templates ②No etchant required | ①No sacrificial template required ②No etchant required |
Similarity | The surfactant was extracted by HCl/EtOH solution | |||
Influence factor | ①Amount and type of etchant ②Etching temperature ③SNs size and organosilicon source concentration | Stability of droplets or micelles | Hydrothermal time and temperature | |
Advantages | Easy to control cavity diameter | ①No sacrificial template required ②No etchant required ③Simple operation | ①No sacrificial template required ②No etchant required | |
Disadvantages | ①High costs ②Cumbersome operation ③Some of etchants are toxic | ①Stability of droplets or micelles should be considered | High temperature of hydrothermal process |
[1] |
MALGRAS V, ATAEE-ESFAHANI H, WANG H, et al. Nanoarchitectures for mesoporous metals. Advanced Materials, 2016, 28(6): 993-1010.
DOI URL |
[2] |
LI W, LIU J, ZHAO D. Mesoporous materials for energy conversion and storage devices. Nature Reviews Materials, 2016, 1(6): 16023-17.
DOI URL |
[3] |
LINARES N, SILVESTRE-ALBERO A M, SERRANO E, et al. Mesoporous materials for clean energy technologies. Chemical Society Reviews, 2014, 43(22): 7681-7717.
DOI PMID |
[4] |
YANG X, QIU P, YANG J, et al. Mesoporous materials-based electrochemical biosensors from enzymatic to nonenzymatic. Small, 2021, 17(9): 1904022-16.
DOI URL |
[5] |
MANZANO M, VALLET-REGÍ M. Mesoporous silica nanoparticles for drug delivery. Advanced Functional Materials, 2020, 30(2): 1902634-13.
DOI URL |
[6] |
ZHOU Y, QUAN G, WU Q, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharmaceutica Sinica B, 2018, 8(2): 165-177.
DOI PMID |
[7] | THI H, NGUYEN Q, HOANG T, et al. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering: C, 2019, 99: 631-656. |
[8] |
GNANAMOORTHY P, ANANDHAN S, PRABU V A. Natural nanoporous silica frustules from marine diatom as a biocarrier for drug delivery. Journal of Porous Materials, 2014, 21(5): 789-796.
DOI URL |
[9] |
SZCZĘŚNIAK B, CHOMA J, JARONIEC M. Major advances in the development of ordered mesoporous materials. Chemical Communications, 2020, 56(57): 7836-7848.
DOI URL |
[10] |
PANG L B, WANG D P. Drug carrier based on mesoporous borosilicate glass microspheres: preparation and performance. Journal of Inorganic Materials, 2022, 37(7): 780-786.
DOI |
[11] |
MA H, TAO J H, WANG Y N, et al. Gold nanoparticles supported on silica & titania hybrid mesoporous spheres and their catalytic performance regulation. Journal of Inorganic Materials, 2022, 37(4): 404-412.
DOI URL |
[12] |
PAN S, LI Y S, SHI J L. Facile synthesis of dendritic mesoporous silica nanoparticles for Co-loading of doxorubicin and hemoglobin. Journal of Inorganic Materials, 2018, 33(10): 1097-1102.
DOI |
[13] |
ZEA C, ALCÁNTARA J, BARRANCO-GARCÍA R, et al. Synthesis and characterization of hollow mesoporous silica nanoparticles for smart corrosion protection. Nanomaterials, 2018, 8(7): 478.
DOI URL |
[14] |
BAO Y, WANG T. Recent advances in fabrication and sustained/ controlled-release application of hollow silica microspheres. Journal of Inorganic Materials, 2016, 31(12): 1269-1278.
DOI URL |
[15] | MOGHADDAM S P H, YAZDIMAMAGHANI M, GHANDEHARI H. Glutathione-sensitive hollow mesoporous silica nanoparticles for controlled drug delivery. Journal of Controlled Release, 2018, 282: 62-75. |
[16] | GAO Y, ZHANG Y, HE S, et al. Fabrication of a hollow mesoporous silica hybrid to improve the targeting of a pesticide. Chemical Engineering Journal, 2019, 364: 361-369. |
[17] | TIAN M, LONG Y, XU D, et al. Hollow mesoporous silica nanotubes modified with palladium nanoparticles for environmental catalytic applications. Journal of Colloid and Interface Science, 2018, 521: 132-140. |
[18] | ZHAO D Y, WAN Y, ZHOU W Z, et al. Ordered mesoporous molecular sieve materials, 2013. Beijing: Higher education press, 2013: 397-426. |
[19] |
LIN F, MENG X, WU L, et al. Inorganic salt assisted self-assembly of periodic mesoporous organosilicas with various structures under alkaline conditions. European Journal of Inorganic Chemistry, 2019, 2019(38): 4063-4069.
DOI URL |
[20] | GOTO Y, MIZOSHITA N, WAKI M, et al. Synthesis and applications of periodic mesoporous organosilicas//Abderrazzak D, Masakazu A. Chemistry of Silica and Zeolite-Based Materials. Elsevier, 2019: 1-25. |
[21] |
CROISSANT J G, CATTOËN X, MAN M W C, et al. Syntheses and applications of periodic mesoporous organosilica nanoparticles. Nanoscale, 2015, 7(48): 20318-20334.
DOI PMID |
[22] |
PARK S S, MOORTHY M S, HA C S. Periodic mesoporous organosilica (PMO) for catalytic applications. Korean Journal of Chemical Engineering, 2014, 31(10): 1707-1719.
DOI URL |
[23] |
WANG W, LOFGREEN J E, OZIN G A. Why PMO? Towards functionality and utility of periodic mesoporous organosilicas. Small, 2010, 6(23): 2634-2642.
DOI PMID |
[24] |
YANG Q H, LIU J, ZHONG H, et al. Progress in the periodic mesoporous organosilicas. Journal of Inorganic Materials, 2009, 24(4): 641-649.
DOI URL |
[25] |
ZENG Y L, CHEN J J, TIAN Z F, et al. Preparation of mesoporous organosilica-based nanosystem for in vitro synergistic chemo- and photothermal therapy. Journal of Inorganic Materials, 2020, 35(12): 1365-1372.
DOI URL |
[26] |
WU M, CHEN Y, ZHANG L, et al. A salt-assisted acid etching strategy for hollow mesoporous silica/organosilica for pH-responsive drug and gene co-delivery. Journal of Materials Chemistry B, 2015, 3(5): 766-775.
DOI PMID |
[27] |
TENG Z, LI W, TANG Y, et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 1707612-24.
DOI URL |
[28] | CHEN J, YANG Y, LIN B, et al. Hollow mesoporous organosilica nanotheranostics incorporating formimidoyltransferase cyclodeaminase (FTCD) plasmids for magnetic resonance imaging and tetrahydrofolate metabolism fission on hepatocellular carcinoma. International Journal of Pharmaceutics, 2022, 612: 121281-11. |
[29] | CHUNLING L, XIYU Z, MENG C, et al. Application of hollow mesoporous organosilica nanoparticles as pH and redox double stimuli-responsive nanocontainer in the controlled release of corrosion inhibitor molecules. Progress in Organic Coatings, 2021, 159: 106437-12. |
[30] |
QIU P, MA B, HUNG C T, et al. Spherical mesoporous materials from single to multilevel architectures. Accounts of Chemical Research, 2019, 52(10): 2928-2938.
DOI PMID |
[31] |
SHAO Y, SONG J, LI X, et al. Synthesis of noble metal M@YSiO2yolk-shell nanoparticles with thin organic/inorganic hybrid outer shells via an aqueous medium phase. Langmuir, 2021, 37(23): 7237-7245.
DOI URL |
[32] | WU J, LIU Y, TANG Y, et al. Synergistic chemo-photothermal therapy of breast cancer by mesenchymal stem cell-encapsulated yolk-shell GNR@HPMOs-PTX nanospheres. Applied Materials & Interfaces, 2016, 8(28): 17927-17935. |
[33] |
YU L, PAN P, ZHANG Y, et al. Nonsacrificial self-template synthesis of colloidal magnetic yolk-shell mesoporous organosilicas for efficient oil/water interface catalysis. Small, 2019, 15(14): 1805465-9.
DOI URL |
[34] |
CHEN Y, XU P, CHEN H, et al. Colloidal HPMO nanoparticles: silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications. Advanced Materials, 2013, 25(22): 3100-3105.
DOI URL |
[35] |
TENG Z, SU X, ZHENG Y, et al. A facile multi-interface transformation approach to monodisperse multiple-shelled periodic mesoporous organosilica hollow spheres. Journal of the American Chemical Society, 2015, 137(24): 7935-7944.
DOI PMID |
[36] |
WANG C, SANG G, RONG Y, et al. Unexpected phenomenon in a conventional system: synthesis of raspberry-like hollow periodic mesoporous organosilica with controlled structure in one continuous step. New Journal of Chemistry, 2021, 45(15): 6651-6660.
DOI URL |
[37] |
TENG Z, WANG C, TANG Y, et al. Deformable hollow periodic mesoporous organosilica nanocapsules for significantly improved cellular uptake. Journal of the American Chemical Society, 2018, 140(4): 1385-1393.
DOI PMID |
[38] | BAO Y, SHI C, WANG T, et al. Recent progress in hollow silica: template synthesis, morphologies and applications. Microporous and Mesoporous Materials, 2016, 227: 121-136. |
[39] | BAO Y, SHI C H, MA J Z. Fabrication of hollow silica spheres and their effect on water vapor permeability of waterborne polyurethane film. Journal of the Chinese Ceramic Society, 2015, 43(1): 35-41. |
[40] | LIU X, JIAO Z, SONG T, et al. Surfactant-assisted selective etching strategy for generation of rattle-like mesoporous silica nanoparticles. Journal of Colloid and Interface Science, 2017, 490: 497-504. |
[41] |
CHO Y S. Fabrication of hollow or macroporous silica particles by spray drying of colloidal dispersion. Journal of Dispersion Science and Technology, 2016, 37(1): 23-33.
DOI URL |
[42] | ZHANG W J, LIANG X L, LYU J W, et al. Synthesis and biomedicine application progress of periodic mesoporous organosilicas. Fine Chemicals, 2022, 39(02): 236-246. |
[43] | KARIMI B, GANJI N, POURSHIANI O, et al. Periodic mesoporous organosilicas (PMOs): from synthesis strategies to applications. Progress in Materials Science, 2021,125: 100896-90. |
[44] |
HUANG X, LI W, WANG M, et al. A facile template route to periodic mesoporous organosilicas nanospheres with tubular structure by using compressed CO2. Scientific Reports, 2017, 7(1): 45055-11.
DOI PMID |
[45] |
GUO W, WANG J, LEE S J, et al. A general pH-responsive supramolecular nanovalve based on mesoporous organosilica hollow nanospheres. Chemistry-a European Journal, 2010, 16(29): 8641-8646.
DOI PMID |
[46] | YANG L, GUO H, WANG L, et al. A facile “polystyrene- dissolving” strategy to hollow periodic mesoporous organosilica with flexible structure-tailorability. Microporous and Mesoporous Materials, 2017, 239: 173-179. |
[47] | KOIKE N, CHAIKITTISILP W, SHIMOJIMA A, et al. Surfactant- free synthesis of hollow mesoporous organosilica nanoparticles with controllable particle sizes and diversified organic moieties. Royal Society of Chemistry Advances, 2016, 6: 90435-90445. |
[48] | WANG Y, WANG P, CHEN L, et al. Organosilane-assisted selective etching strategy for fabrication of hollow/rattle-type mesoporous organosilica nanospheres. Journal of Solid State Chemistry, 2018, 266: 279-285. |
[49] | LI C L, ZHAO X, MENG C, et al. Application of hollow mesoporous organosilica nanoparticles as pH and redox double stimuli- responsive nanocontainer in the controlled release of corrosion inhibitor molecules. Progress in Organic Coatings, 2021, 159: 106437. |
[50] | HUANG L, FENG J, FAN W, et al. Intelligent pore switch of hollow mesoporous organosilica nanoparticles for high contrast magnetic resonance imaging and tumor-specific chemotherapy. Nano-Micro Letters, 2021, 21(22): 9551-9559. |
[51] |
DJOJOPUTRO H, ZHOU X F, QIAO S Z, et al. Periodic mesoporous organosilica hollow spheres with tunable wall thickness. Journal of the American Chemical Society, 2006, 128(19): 6320-6321.
PMID |
[52] | MA X, ZHANG J, DANG M, et al. Hollow periodic mesoporous organosilica nanospheres by a facile emulsion approach. Journal of Colloid and Interface Science, 2016, 475: 66-71. |
[53] |
MA N, DENG Y, LIU W, et al. A one-step synthesis of hollow periodic mesoporous organosilica spheres with radially oriented mesochannels. Chemical Communications, 2016, 52(17): 3544-3547.
DOI URL |
[54] | TENG Z, LI W, TANG Y, et al. Mesoporous organosilica hollow nanoparticles: synthesis and applications. Advanced Materials, 2019, 31(38): 170762. |
[55] |
TENG Z, SU X, LEE B, et al. Yolk-shell structured mesoporous nanoparticles with thioether-bridged organosilica frameworks. Chemistry of Materials, 2014, 26(20): 5980-5987.
DOI URL |
[56] |
TENG Z, WANG S, SU X, et al. Facile synthesis of yolk-shell structured inorganic-organic hybrid spheres with ordered radial mesochannels. Advanced Materials, 2014, 26(22): 3741-3747.
DOI URL |
[57] |
TENG Z, ZHANG J, LI W, et al. Facile synthesis of yolk- shell-structured triple-hybridized periodic mesoporous organosilica nanoparticles for biomedicine. Small, 2016, 12(26): 3550-3558.
DOI URL |
[58] | ZHANG J, WENG L, SU X, et al. Cisplatin and doxorubicin high- loaded nanodrug based on biocompatible thioether-and ethane- bridged hollow mesoporous organosilica nanoparticles. Journal of Colloid and Interface Science, 2018, 513: 214-221. |
[59] | YU R, TAO J, SHAO L, et al. Facile synthesis of hybridized triple-shelled hollow mesoporous organosilica nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 2022, 131: 104122-7. |
[60] |
GUAN L, CHEN J, TIAN Z, et al. Mesoporous organosilica nanoparticles: degradation strategies and application in tumor therapy. View, 2021, 2(5): 20200117-22.
DOI URL |
[61] |
ZHOU Y, XU Q, LI C, et al. Hollow mesoporous silica nanoparticles as nanocarriers employed in cancer therapy: a review. Frontiers of Materials Science, 2020, 14(4): 373-386.
DOI |
[62] | ANIS T, KHURSHID A, FAKHAR-E-ALAM M, et al. Hollow multicomponent capsules for biomedical applications: a comprehensive review. Journal of Cluster Science, 2022: https://doi.org/10.1007/s10876-022-02272-z. |
[63] | JIN M Z, JIN W L. The updated landscape of tumor microenvironment and drug repurposing. Signal Transduction and Targeted Therapy, 2020, 5(1): 1052-1067. |
[64] |
LI Y, WANG Z, WEI Q, et al. Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polymer chemistry, 2016, 7(38): 5949-5956.
DOI PMID |
[65] | MOLLAZADEH S, MACKIEWICZ M, YAZDIMAMAGHANI M. Recent advances in the redox-responsive drug delivery nanoplatforms: a chemical structure and physical property perspective. Materials Science and Engineering: C, 2021, 118: 111536-13. |
[66] | WU J, MENG Z, EXNER A, et al. Biodegradable cascade nanocatalysts enable tumor-microenvironment remodeling for controllable CO release and targeted/synergistic cancer nanotheapy. Biomaterials, 2021, 276: 121001-13. |
[67] | FAN J, ZHANG Z, WANG Y, et al. Photo-responsive degradable hollow mesoporous organosilica nanoplatforms for drug delivery. Journal of Nanobiotechnology, 2020, 18: 91-14. |
[68] | LIU X, SU H, SHI W, et al. Functionalized poly (pyrrole-3- carboxylic acid) nanoneedles for dual-imaging guided PDT/PTT combination therapy. Biomaterials, 2018, 167: 177-190. |
[69] | BARKAT A, BEG S, PANDA S K, et al. Functionalized mesoporous silica nanoparticles in anticancer therapeutics. Seminars in Cancer Biology, 2021, 69: 365-375. |
[70] | ZHANG H, SONG F, DONG C, et al. Co-delivery of nanoparticle and molecular drug by hollow mesoporous organosilica for tumor- activated and photothermal-augmented chemotherapy of breast cancer. Journal of Nanobiotechnology, 2021, 19: 290-13. |
[71] |
YANG Z, FAN W, ZOU J, et al. Precision cancer theranostic platform by in situ polymerization in perylene diimide-hybridized hollow mesoporous organosilica nanoparticles. Journal of the American Chemical Society, 2019, 141(37): 14687-14698.
DOI URL |
[72] | TANG W, FAN W, WANG Z, et al. Acidity/reducibility dual-responsive hollow mesoporous organosilica nanoplatforms for tumor-specific self-assembly and synergistic therapy. Nano Materials, 2018, 12(12): 12269-12283. |
[73] |
LI L, LIN H, LI D, et al. Ultrasound activated nanosensitizers for sonodynamic therapy and theranostics. Biomedical Materials, 2021, 16(2): 022008-17.
DOI URL |
[74] | ZHU P, CHEN Y, SHI J. Nanoenzyme-augmented cancer sonodynamic therapy by catalytic tumor oxygenation. Nano, 2018, 12(4): 3780-3795. |
[75] |
ZOU W, HAO J, WU J, et al. Biodegradable reduce expenditure bioreactor for augmented sonodynamic therapy via regulating tumor hypoxia and inducing pro-death autophagy. Journal of Nanobiotechnology, 2021, 19(1): 418-15.
DOI URL |
[76] | FAN W, LU N, SHEN Z, et al. Generic synthesis of small-sized hollow mesoporous organosilica nanoparticles for oxygen-independent X-ray-activated synergistic therapy. Nature Communications, 2019, 10: 1241-14. |
[77] | LU N, FAN W, YI X, et al. Biodegradable hollow mesoporous organosilica nanotheranostics for mild hyperthermia-induced bubble-enhanced oxygen-sensitized radiotherapy. Nano, 2018, 12(2): 1580-1591. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||