Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (11): 1236-1244.DOI: 10.15541/jim20220240
• RESEARCH ARTICLE • Previous Articles Next Articles
CHI Zheren1(), ZHANG Liao2, GUO Zhiqian2(), LI Yongsheng1,3, NIU Dechao1()
Received:
2022-04-21
Revised:
2022-05-07
Published:
2022-06-16
Online:
2022-06-16
Contact:
GUO Zhiqian, professor. E-mail: guozq@ecust.edu.cn;About author:
CHI Zheren (1997-), male, Master candidate. E-mail: chizheren@163.com
Supported by:
CLC Number:
CHI Zheren, ZHANG Liao, GUO Zhiqian, LI Yongsheng, NIU Dechao. Flav7-loaded Silica-based Hybrid Micelles: Synthesis and Photothermal Performance[J]. Journal of Inorganic Materials, 2022, 37(11): 1236-1244.
Fig. 2 Schematic illustration for the fabrication of FPOMs MPTMS: 3-Mercaptopropyl trimethoxsilicon; PEG: Polyethylene glycol; MAL-mPEG: Maleimide-methoxy (polyethylene glycol); PS-b-PAA: Polystyrene-block-polyacrylic acid; FPOMs: Flav7-PEGylated- organosilica-micelles The color figure can be obtained from online edition
Fig. 4 Element mapping scanning images of Flav7-PEGylated- urganosilica-micelles (FPOMs) (a) Image of HAADF; (b-d) Images of O (b), Si (c) and S (d) The color figures can be obtained from online edition
Fig. 5 Hydrodynamic sizes of FMs, FOMs and FPOMs FMs: Flav7-micelles; FOMs: Flav7-organosilica-micelles; FPOMs: Flav7-PEGylated-organosilica-micelles The color figure can be obtained from online edition
Fig. 6 Zeta potentials of FMs, FOMs and FPOMs FMs: Flav7-Micelles; FOMs: Flav7-organosilica-micelles; FPOMs: Flav7-PEGylated-organosilica-micelles The color figure can be obtained from online edition
Fig. 9 Hydrodynamic sizes of FMs (a) and FPOMs (b) in H2O, PBS (pH 7.4), RPMI-1640 medium (10% serum) and DMEM medium (10% serum) for a week The color figures can be obtained from online edition
Fig. 12 Photothermal property of FPOMs (a) FPOMs (600 μg/mL) under different power densities of 808 nm laser irradiation; (b) FPOMs at different concentrations under 808 nm (1.0 W/cm2) laser irradiation The color figures can be obtained from online edition
Fig. 15 Relative cell viabilities of FPOMs treated cells after laser irradiation at 808 nm (1.0 W/cm2) for 5 min (a) SMMC-7721 cancer cells with or without laser irradiation (***p < 0.001); (b) MEF and 3T3 cells The color figures can be obtained from online edition
Fig. 16 Flow cytometry analysis of SMMC-7721 cells with different treatment and staining by Annexin-V/PI reagents (a) Control; (b) Laser irradiation only; (c) FPOMs only; (d) FPOMs and laser irradiation The color figure can be obtained from online edition
Fig. 17 Confocal laser scanning microscope images of SMMC-7721 cells with FPOMs (0, 150, and 300 μg/mL) treated by (a) or not by (b) laser irradiation (808 nm, 1.0 W/cm2, 5 min). The color figures can be obtained from online edition
[1] |
XU C, PU K. Second near-infrared photothermal materials for combinational nanotheranostics. Chemical Society Reviews, 2021, 50(2): 1111-1137.
DOI PMID |
[2] | ZHI D, YANG T, O'HAGAN J, et al. Photothermal therapy. Journal of Controlled Release, 2020, 325: 52-71. |
[3] |
JUNG H S, VERWILST P, SHARMA A, et al. Organic molecule- based photothermal agents: an expanding photothermal therapy universe. Chemical Society Reviews, 2018, 47(7): 2280-2297.
DOI URL |
[4] | CHEN Y W, SU Y L, HU S H, et al. Functionalized graphene nanocomposites for enhancing photothermal therapy in tumor treatment. Advanced Drug Delivery Reviews, 2016, 105: 190-204. |
[5] |
LIU Y, BHATTARAI P, DAI Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer. Chemical Society Reviews, 2019, 48(7): 2053-2108.
DOI URL |
[6] |
HUANG X, JAIN P K, EL-SAYED I H, et al. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers in Medical Science, 2008, 23 (3): 217-228.
DOI URL |
[7] | LI J, RAO J, PU K. Recent progress on semiconducting polymer nanoparticles for molecular imaging and cancer phototherapy. Biomaterials, 2018, 155: 217-235. |
[8] |
SONG X, CHEN Q, LIU Z. Recent advances in the development of organic photothermal nano-agents. Nano Research, 2015, 8(2): 340-354.
DOI URL |
[9] |
RAJORA M, LOU J, ZHENG G. Advancing porphyrin's biomedical utility via supramolecular chemistry. Chemical Society Reviews, 2017, 46(21): 6433-6469.
DOI URL |
[10] |
DOANE T L, BURDA C. The unique role of nanoparticles in nanomedicine: imaging, drug delivery and therapy. Chemical Society Reviews, 2012, 41(7): 2885-2911.
DOI PMID |
[11] |
ZOU L, WANG H, HE B, et al. Current approaches of photothermal therapy in treating cancer metastasis with nanotherapeutics. Theranostics, 2016, 6(6): 762-772.
DOI PMID |
[12] |
DOUGHTY A C, HOOVER A R, LAYTON E, et al. Nanomaterial applications in photothermal therapy for cancer. Materials, 2019, 12(5): 779-14.
DOI URL |
[13] | WANG H, CHANG J, SHI M, et al. A dual-targeted organic photothermal agent for enhanced photothermal therapy. Angewandte Chemie International Edition, 2019, 131(4): 1069-1073. |
[14] | CHENG Q, TIAN Y, DANG H, et al. Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging- guided photothermal therapy under 1064 nm irradiation. Advanced Healthcare Materials, 2022, 11: 2101697-10. |
[15] |
COSCO E D, CARAM J R, BRUNS O T, et al. Flavylium polymethine fluorophores for near- and shortwave infrared imaging. Angewandte Chemie International Edition, 2017, 56(42): 13126-13129.
DOI URL |
[16] |
LI T, LI C, RUAN Z, et al. Polypeptide-conjugated second near- infrared organic fluorophore for image-guided photothermal therapy. ACS Nano, 2019, 13 (3): 3691-3702.
DOI URL |
[17] |
NIU D, LI Y, MA Z, et al. Preparation of uniform, water-soluble, and multifunctional nanocomposites with tunable sizes. Advanced Functional Materials, 2010, 20 (5): 773-780.
DOI URL |
[18] |
FADDA A, EL-MEKAWY R E. Utility of quaternary ammonium salts in synthesis of some novel cyanine dyes as potential antibacterial and antitumor agents. Dyes and Pigments, 2013, 99(2): 512-519.
DOI URL |
[19] | ROPER D K, AHN W, HOEPFNER M. Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. Journal of Physical Chemistry C, 2007, 111: 3636-3641. |
[20] |
OSS-RONEN L, SCHMIDT J, ABETZ V, et al. Characterization of block copolymer self-assembly: from solution to nanoporous membranes. Macromolecules, 2012, 45(24): 9631-9642.
DOI URL |
[21] |
NIU D, LI Y, SHI J. Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform. Chemical Society Reviews, 2017, 46(3): 569-585.
DOI PMID |
[22] |
MALDINEY T, RICHARD C, SEGUIN J, et al. Effect of core diameter, surface coating, and PEG chain length on the biodistribution of persistent luminescence nanoparticles in mice. ACS Nano, 2011, 5 (2): 854-862.
DOI URL |
[23] |
FENG H, LU X, WANG W, et al. Block copolymers: synthesis, self- assembly, and applications. Polymers (Basel), 2017, 9(10): 494-524.
DOI URL |
[24] |
JIANG Z, ZHANG C, WANG X, et al. A borondifluoride- complex-based photothermal agent with an 80% photothermal conversion efficiency for photothermal therapy in the NIR-II window. Angewandte Chemie International Edition, 2021, 60(41): 22376-22384.
DOI URL |
[25] | WANG Y, NIU C, FAN S, et al. Indocyanine green loaded modified mesoporous silica nanoparticles as an effective photothermal nanoplatform. International Journal of Molecular Sciences, 2020, 21: 4789-15. |
[26] | DING Y, WANG C, LU B, et al. Enhancing the stability and photothermal conversion efficiency of ICG by pillar[5]arene-based host-guest interaction. Frontiers in Chemistry, 2021, 9: 775436-8. |
[27] |
LI C, LIN W, LIU S, et al. Structural optimization of organic fluorophores for highly efficient photothermal therapy. Materials Chemistry Frontiers, 2021, 5(1): 284-292.
DOI URL |
[28] | YOON H J, LEE H S, LIM J Y, et al. Liposomal indocyanine green for enhanced photothermal therapy. ACS Applied Materials & Interfaces, 2017, 9(7): 5683-5691. |
[29] |
QIAN H, CHENG Q, TIAN Y, et al. An anti-aggregation NIR-II heptamethine-cyanine dye with a stereo-specific cyanine for imaging-guided photothermal therapy. Journal of Materials Chemistry B, 2021, 9(11): 2688-2696.
DOI PMID |
[1] | HE Yan, WANG Pan, DENG An-Ping, YANG Jing, HUANG Ying-Ping, YANG Yong. Preparation of CdS Nanoparticles with Reverse Micelle Method and Photo-degradation of Malachite Green Dye [J]. Journal of Inorganic Materials, 2010, 25(11): 1221-1227. |
[2] | ZHANG Xiu-Li,LI Li,DING Ya-Ping. Facile Synthesis and Photoluminescence of Calcium Sulphate Nanorods [J]. Journal of Inorganic Materials, 2006, 21(6): 1491-1495. |
[3] | WU Ping-Wei,GAO Lian. Synthesis of CdS Nanoparticles in Reverse Micelles by Gas-Liquid Reaction Technique [J]. Journal of Inorganic Materials, 2003, 18(4): 937-941. |
[4] | YANG Chuanfang,CHEN Jiayong. Study on the Preparation of Stabilized Ultrafine Zirconia Powders by Using Reverse Micellae [J]. Journal of Inorganic Materials, 1997, 12(5): 749-754. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||