Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 683-690.DOI: 10.15541/jim20210652
• RESEARCH LETTER • Previous Articles Next Articles
XU Puhao(), ZHANG Xiangzhao, LIU Guiwu(), ZHANG Mingfen, GUI Xinyi, QIAO Guanjun()
Received:
2021-10-22
Revised:
2022-01-19
Published:
2022-06-20
Online:
2022-01-24
Contact:
LIU Guiwu, professor. E-mail: gwliu76@ujs.edu.cn;About author:
XU Puhao (1993–), male, PhD candidate. E-mail: 13667004282@163.com
Supported by:
CLC Number:
XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal[J]. Journal of Inorganic Materials, 2022, 37(6): 683-690.
Fig. 1 BSE images of four nominal Al-Ti alloys (a) Al-10Ti; (b) Al-20Ti; (c) Al-30Ti; (d) Al-40Ti. The black dots are the diamond particles introduced during the polishing
Fig. 3 Cross-sectional BSE images of SiC/SiC joints brazed using the four nominal Al-Ti alloys (a-h) and corresponding EDS elemental mapping (i) (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti; (g, h) Al-40Ti
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Table 1 EDS results of partial phases in joint interlayers (atom percent)
Data from | Elemental composition /% | Possible phases | |||
---|---|---|---|---|---|
Ti | Al | C | Si | ||
0.87 | 98.04 | ‒ | 1.09 | (Al) | |
55.33 | ‒ | 45.67 | ‒ | TiC | |
25.85 | 62.83 | ‒ | 11.32 | (Al,Si)3Ti | |
‒ | 98.91 | ‒ | 1.09 | (Al) | |
53.98 | 0.06 | 45.11 | 0.84 | TiC | |
26.27 | 59.23 | 2.47 | 12.03 | (Al,Si)3Ti | |
48.61 | 1.85 | 31.39 | 18.15 | Ti3Si(Al)C2 | |
50.29 | 1.26 | 30.42 | 18.03 | Ti3Si(Al)C2 |
Fig. 4 Cross-sectional BSE images of SiC/Al-20Ti/SiC joints brazed with interlayers of different thickness (a) ~25 μm; (b) 50 μm; (c) 70 μm; (d) 100 μm
Fig. 5 Interfacial (a) TEM and (b?f) HRTEM images of SiC/Al-20Ti/SiC joint sample with interlayer thickness of ~25 μm and the corresponding (g?i) SAED patterns
Fig. 7 Typical fracture surface morphologies of SiC/SiC joints brazed using different nominal Al-Ti alloys (a, b) Al-10Ti; (c, d) Al-20Ti; (e, f) Al-30Ti ; (g, h) Al-40Ti
[1] |
LIU G W, ZHANG X Z, YANG J, et al. Recent advances in joining of SiC-based materials (monolithic SiC and SiCf/SiC composites): joining processes, joint strength, and interfacial behavior. Journal of Advanced Ceramics, 2019, 8(1): 19-38.
DOI URL |
[2] |
ZHAO S, YANG Z C, ZHOU X G. Fracture behavior of SiC/SiC composites with different interfaces. Journal of Inorganic Materials, 2016, 31(1): 58-62.
DOI URL |
[3] |
FERNIE J, DREW R, KNOWLES K. Joining of engineering ceramics. International Materials Reviews, 2009, 54: 283-331.
DOI URL |
[4] |
YOON D H, REIMANIS I E. A review on the joining of SiC for high-temperature applications. Journal of the Korean Ceramic Society, 2020, 57(5): 246-270.
DOI URL |
[5] |
VALENZA F, GAMBARO S, MUOLO M L, et al. Wetting of SiC by Al-Ti alloys and joining by in-situ formation of interfacial Ti3Si(Al)C2. Journal of the European Ceramic Society, 2018, 38(11): 3727-3734.
DOI URL |
[6] |
LIU Y, HUANG Z R, LIU X J. Joining of sintered silicon carbide using ternary Ag-Cu-Ti active brazing alloy. Ceramics International, 2009, 35(8): 3479-3484.
DOI URL |
[7] |
XIONG H P, WEI M, XIE Y H, et al. Control of interfacial reactions and strength of the SiC/SiC joints brazed with newly- developed Co-based brazing alloy. Journal of Materials Research, 2007, 22(10): 2727-2736.
DOI URL |
[8] |
KOLTSOV A, HODAJ F, EUSTATHOPOULOS N. Brazing of AlN to SiC by Pr silicides: physicochemichal aspects. Materials Science and Engineering: A, 2008, 495(1/2): 259-264.
DOI URL |
[9] | RICCARDI B, NANNETTI C A, WOLTERSDORF J, et al. Joining of SiC based ceramics and composites with Si-16Ti and Si-18Cr eutectic alloys. International Journal of Materials & Product Technology, 2004, 20(5): 440-451. |
[10] |
ZHAO S T, ZHAGN X Z, LIU G W, et al. Surface metallization of SiC ceramic by Mo-Ni-Si coatings for improving its wettability by molten Ag. Rare Metal Materials and Engineering, 2018, 47(3): 759-765.
DOI URL |
[11] |
LIU G W, MUOLO M L, VALENZA F, et al. Survey on wetting of SiC by molten metals. Ceramics International, 2010, 36(4): 1177-1188.
DOI URL |
[12] | ZHAO H T, HUANG J H, ZHANG H, et al. Vacuum brazing of Si/SiC ceramic and low expansion titanium alloy by using Cu-Ti fillers. Rare Metal Materials and Engineering, 2007, 36(12): 2184-2188. |
[13] |
LI J K, LIU L, LIU X. Joining of SiC ceramic by 22Ti-78Si high- temperature rutectic brazing alloy. Journal of Inorganic Materials, 2011, 26(12): 1314-1318.
DOI URL |
[14] |
FU W, SONG X G, TIAN R C, et al. Wettability and joining of SiC by Sn-Ti: Microstructure and mechanical properties. Journal of Materials Science and Technology, 2020, 40: 15-23.
DOI URL |
[15] | XU P H, GUI X Y, ZHANG X Z, et al. Wetting and interfacial behavior of Al-Ti/4H-SiC system: A combined study of experiment and DFT simulation. Ceramics International, 2021, 47: 69-77. |
[16] |
HAO Z T, WANG D P, YANG Z W, et al. Microstructural evolution and mechanical properties of FeNi42alloy and SiC ceramic joint vacuum brazed with Ag-based filler metals. Ceramics International, 2020, 46(8): 12795-12805.
DOI URL |
[17] |
PRAKASH P, MOHANDAS T, RAJU P D. Microstructural characterization of SiC ceramic and SiC-metal active metal brazed joints. Scripta Materialia, 2005, 52(11): 1169-1173.
DOI URL |
[18] |
TIAN W B, SUN Z M, ZHANG P, et al. Brazing of silicon carbide ceramics with Ni-Si-Ti powder mixtures. Journal of the Australian Ceramic Society, 2017, 53(2): 511-516.
DOI URL |
[19] |
SUDMEYER I, HETTESHEIMER T, ROHDE M. On the shear strength of laser brazed SiC-steel joints: effects of braze metal fillers and surface patterning. Ceramics International, 2010, 36(3): 1083-1090.
DOI URL |
[20] |
CHEN Z B, HU S P, SONG X G, et al. Brazing of SiC ceramics pretreated by chromium coating using inactive AgCu filler metal. International Journal of Applied Ceramic Technology, 2020, 17(6): 2591-2597.
DOI URL |
[21] |
LIU Y, ZHU Y Z, YANG Y, et al. Microstructure of reaction layer and its effect on the joining strength of SiC/SiC joints brazed using Ag-Cu-In-Ti alloy. Journal of Advanced Ceramics, 2014, 3(1): 71-75.
DOI URL |
[22] |
MOSZNER F, MATA-OSORO G, CHIODI M, et al. Mechanical behavior of SiC joints brazed using an active Ag-Cu-In-Ti braze at elevated temperatures. International Journal of Applied Ceramic Technology, 2017, 14(4): 703-711.
DOI URL |
[23] |
HE H M, LU C Y, HE H M, et al. Characterization of SiC ceramic joints brazed using Au-Ni-Pd-Ti high-temperature filler alloy. Materials, 2019, 12(6): 931.
DOI URL |
[24] | QIN Q, ZHANG J, LU CJ, et al. Microstructure and mechanical properties of the SiC/Zr4 joints brazed with TiZrNiCu filler for nuclear application. Progress in Natural Science-Materials International, 2018, 28(3): 124-131. |
[25] |
XIONG H P, WEI M, XIE Y H, et al. Brazing of SiC to a wrought nickel-based superalloy using CoFeNi(Si, B)CrTi filler metal. Materials Letters, 2007, 61(25): 4662-4665.
DOI URL |
[26] |
SONG X G, CHEN Z B, HU S P, et al. Wetting behavior and brazing of titanium-coated SiC ceramics using Sn0.3Ag0.7Cu filler. Journal of the American Ceramic Society, 2019, 103(2): 912-920.
DOI URL |
[27] |
CHEN Z B, BIAN H, NIU C N, et al. Titanium-deposition assisted brazing of SiC ceramics using inactive AgCu filler. Materials Characterization, 2018, 142: 219-222.
DOI URL |
[28] |
DAI X Y, CAO J, CHEN Z, et al. Brazing SiC ceramic using novel B4C reinforced Ag-Cu-Ti composite filler. Ceramics International, 2016, 42(5): 6319-6328.
DOI URL |
[29] |
LIU Y, QI Q, ZHU Y, et al. Microstructure and joining strength evaluation of SiC/SiC joints brazed with SiCp/Ag-Cu-Ti hybrid tapes. Journal of Adhesion Science and Technology, 2015, 29(15): 1563-1571.
DOI URL |
[30] |
LI Z, WEI R W, WEN Q, et al. Microstructure and mechanical properties of SiC ceramic joints vacuum brazed with in-situ formed SiC particulate reinforced Si-24Ti alloy. Vacuum, 2019, 173: 109160.
DOI URL |
[31] |
ZHONG Z H, HOU G X, ZHU Z X, et al. Microstructure and mechanical strength of SiC joints brazed with Cr3C2 particulate reinforced Ag-Cu-Ti brazing alloy. Ceramics International, 2018, 44(10): 11862-11868.
DOI URL |
[32] |
SONG Y Y, LIU D, HU S P, et al. Graphene nanoplatelets reinforced AgCuTi composite filler for brazing SiC ceramic. Journal of the European Ceramic Society, 2019, 39(4): 696-704.
DOI URL |
[33] |
ZHOU X B, LI Y B, LI Y F, et al. Residual thermal stress of SiC/Ti3SiC2/SiC joints calculation and relaxed by post-annealing. International Journal of Applied Ceramic Technology, 2018, 15: 1157-1165.
DOI URL |
[34] |
ZHOU X B, HAN Y H, SHEN X F, et al. Fast joining SiC ceramics with Ti3SiC2 tape film by electric field-assisted sintering technology. Journal of Nuclear Materials, 2015, 466: 322-327.
DOI URL |
[35] |
YANG D X, ZHOU Y, YAN X H, et al. Highly conductive wear resistant Cu/Ti3SiC2(TiC/SiC) co-continuous composites via vacuum infiltration process. Journal of Advanced Ceramics, 2020, 9(1): 83-93.
DOI URL |
[36] |
ZHANG X Z, LIU G W, TAO J N, et al. Brazing of WC-8Co cemented carbide to steel using Cu-Ni-Al alloys as filler metal: microstructures and joint mechanical behavior. Journal of Materials Science and Technology, 2018, 34(7): 1180-1188.
DOI URL |
[37] |
ZHOU X B, JING L, KWON Y D, et al. Fabrication of SiCw/Ti3SiC2 composites with improved thermal conductivity and mechanical properties using spark plasma sintering. Journal of Advanced Ceramics, 2020, 9(4): 462-470.
DOI URL |
[1] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[2] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[3] | JING Kaikai, GUAN Haoyang, ZHU Siyu, ZHANG Chao, LIU Yongsheng, WANG Bo, WANG Jing, LI Mei, ZHANG Chengyu. Tensile Creep Behavior of Cansas-II SiCf/SiC Composites at High Temperatures [J]. Journal of Inorganic Materials, 2023, 38(2): 177-183. |
[4] | LI Wenjun, WANG Hao, TU Bingtian, CHEN Qiangguo, ZHENG Kaiping, WANG Weiming, FU Zhengyi. Preparation and Property of Mg0.9Al2.08O3.97N0.03 Transparent Ceramic with Broad Optical Transmission Range [J]. Journal of Inorganic Materials, 2022, 37(9): 969-975. |
[5] | SHENG Lili, CHANG Jiang. Photo/Magnetic Thermal Fe2SiO4/Fe3O4 Biphasic Bioceramic and Its Composite Electrospun Membrane: Preparation and Antibacterial [J]. Journal of Inorganic Materials, 2022, 37(9): 983-990. |
[6] | AN Wenran, HUANG Jingqi, LU Xiangrong, JIANG Jianing, DENG Longhui, CAO Xueqiang. Effect of Heat-treatment Temperature on Thermal and Mechanical Properties of LaMgAl11O19 Coating [J]. Journal of Inorganic Materials, 2022, 37(9): 925-932. |
[7] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[8] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[9] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Electromagnetic Interference Shielding Properties of SiC Ceramic Matrix Composite Reinforced by Three-dimensional Silicon Carbide Nanowire Network [J]. Journal of Inorganic Materials, 2022, 37(5): 579-584. |
[10] | ZHANG Ye, YAO Dongxu, ZUO Kaihui, XIA Yongfeng, YIN Jinwei, ZENG Yuping. Combustion Synthesis of Si3N4-BN-SiC Composites by in-situ Introduction of BN and SiC [J]. Journal of Inorganic Materials, 2022, 37(5): 574-578. |
[11] | DING Jianxiang, ZHANG Kaige, LIU Dongming, ZHENG Wei, ZHANG Peigen, SUN Zhengming. Ag-based Electrical Contact Material Reinforced by Ti3AlC2 Ceramic and Its Derivative Ti3C2Tx [J]. Journal of Inorganic Materials, 2022, 37(5): 567-573. |
[12] | WANG Hongda, FENG Qian, YOU Xiao, ZHOU Haijun, HU Jianbao, KAN Yanmei, CHEN Xiaowu, DONG Shaoming. Microstructure and Corrosion Behavior of Brazed Joints of SiC/SiC Composites and Hastelloy N Alloy Using Cu-Ni Alloy [J]. Journal of Inorganic Materials, 2022, 37(4): 452-458. |
[13] | WEI Tingting, GAO Xiguang, SONG Yingdong. Response of 2D SiC/SiC Composites Resistivity to Service Environments [J]. Journal of Inorganic Materials, 2022, 37(4): 420-426. |
[14] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[15] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||