Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 660-668.DOI: 10.15541/jim20210550
Special Issue: 【虚拟专辑】计算材料; 【信息功能】Max层状材料、MXene及其他二维材料
• RESEARCH ARTICLE • Previous Articles Next Articles
XIAO Meixia1(), LI Miaomiao1, SONG Erhong2(), SONG Haiyang1(), LI Zhao1, BI Jiaying1
Received:
2021-08-29
Revised:
2021-10-24
Published:
2022-06-20
Online:
2021-12-16
Contact:
SONG Erhong, associate professor. E-mail: ehsong@mail.sic.ac.cn;About author:
XIAO Meixia (1982–), female, associate professor. E-mail: mxxiao@xsyu.edu.cn
Supported by:
CLC Number:
XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries[J]. Journal of Inorganic Materials, 2022, 37(6): 660-668.
Fig. 1 Top and side views of M1, M2, M3, and M4 Ti3C2T2 configurations Blue, black and nattier blue balls represent Ti, C and T atoms, respectively, where T denotes F, Cl or Br atoms Colorful views ave arailable on website
Ti3C2T2 | M1/eV | M2/eV | M3/eV | M4/eV |
---|---|---|---|---|
Ti3C2F2 | -4.23 | -4.60 | -4.94 | -4.77 |
Ti3C2Cl2 | -2.44 | -3.07 | -3.33 | -3.20 |
Ti3C2Br2 | -1.95 | -2.57 | -2.81 | -2.69 |
Table 1 Formation energy Ef of (eV) Ti3C2T2 with four configurations
Ti3C2T2 | M1/eV | M2/eV | M3/eV | M4/eV |
---|---|---|---|---|
Ti3C2F2 | -4.23 | -4.60 | -4.94 | -4.77 |
Ti3C2Cl2 | -2.44 | -3.07 | -3.33 | -3.20 |
Ti3C2Br2 | -1.95 | -2.57 | -2.81 | -2.69 |
Ti3C2T2 | a /nm | lTi2-T /nm | lTi2-C /nm |
---|---|---|---|
Ti3C2F2 | 0.308 | 0.217 | 0.208 |
Ti3C2Cl2 | 0.319 | 0.251 | 0.211 |
Ti3C2Br2 | 0.325 | 0.264 | 0.213 |
Table 2 Lattice parameters a of M3-Ti3C2T2 and corresponding bond lengths of lTi2-T and lTi2-C
Ti3C2T2 | a /nm | lTi2-T /nm | lTi2-C /nm |
---|---|---|---|
Ti3C2F2 | 0.308 | 0.217 | 0.208 |
Ti3C2Cl2 | 0.319 | 0.251 | 0.211 |
Ti3C2Br2 | 0.325 | 0.264 | 0.213 |
Fig. 2 Partial density of states (PDOS) and electron density difference of M3-Ti3C2T2 Blue, black and nattier blue balls represent Ti, C and T atoms, respectively, and red- and blue-colored regions indicate electron accumulation and depletion, respectively Colorful figures are available on website
Fig. 3 Strain energy to strain curves of M3-Ti3C2T2 along (a) x- and (b) y-direction, respectively, and (c) elasticmodulus values in x and y directions Blue, black and nattier blue balls represent Ti, C and T atoms, respectively Colorful figures are available on website
Ti3C2T2-Li | Eab/eV | Δq/e | Δh/nm |
---|---|---|---|
M3-Ti3C2F2-LiT2 | -1.21 | 0.61 | 0.021 |
M3-Ti3C2Cl2-LiT1 | -0.72 | 0.40 | 0.026 |
M3-Ti3C2Br2-LiT1 | -0.41 | 0.33 | 0.028 |
Table 3 Adsorption energy (Eab), charge transfer amount (Δq) and adsorption height (Δh), of Liion for stable M3-Ti3C2T2-Li with Liion adsorbed on Ti3C2T2 surface
Ti3C2T2-Li | Eab/eV | Δq/e | Δh/nm |
---|---|---|---|
M3-Ti3C2F2-LiT2 | -1.21 | 0.61 | 0.021 |
M3-Ti3C2Cl2-LiT1 | -0.72 | 0.40 | 0.026 |
M3-Ti3C2Br2-LiT1 | -0.41 | 0.33 | 0.028 |
Fig. 4 Schematic diagram of Li-ion migration path on (a) Ti3C2F2, (b) Ti3C2Cl2 and (c) Ti3C2Br2, and corresponding energy profiles and transition states of Li-ion migration on (d) Ti3C2F2, (e) Ti3C2Cl2 and (f) Ti3C2Br2 surfaces Colorful figures are available on website
Fig. 5 Top and side views of (a) Ti3C2F2, (b) Ti3C2Cl2 and (c) Ti3C2Br2 with the adsorption of multi-layer Liions Blue, black, nattier blue, and purple balls represent Ti, C, T, and Li atoms, respectively. 1 Å=0.1 nm Colorful figures are available on website
Ti3C2T2 | OCV1st /V | OCV2nd /V | OCV3rd /V | E2nd /eV | E3rd /eV | CM /(mA h·g-1) |
---|---|---|---|---|---|---|
Ti3C2F2 | 0.57 | 0.61 | - | -5.25 | - | 521.41 |
Ti3C2Cl2 | 0.37 | 0.53 | 0.54 | -5.48 | -4.51 | 674.21 |
Ti3C2Br2 | 0.34 | 0.51 | 0.52 | -5.39 | -4.45 | 491.14 |
Table 4 Average open circuit voltage (OCV), adsorption energies of the Liions on the double (E2nd) and triple (E3rd) layers, and the maximum theoretical capacity (CM) of the multi-layer Li-ion adsorption of M3-Ti3C2T2
Ti3C2T2 | OCV1st /V | OCV2nd /V | OCV3rd /V | E2nd /eV | E3rd /eV | CM /(mA h·g-1) |
---|---|---|---|---|---|---|
Ti3C2F2 | 0.57 | 0.61 | - | -5.25 | - | 521.41 |
Ti3C2Cl2 | 0.37 | 0.53 | 0.54 | -5.48 | -4.51 | 674.21 |
Ti3C2Br2 | 0.34 | 0.51 | 0.52 | -5.39 | -4.45 | 491.14 |
Fig. 7 Top and side views of three feasible stacking configurations of double Ti3C2Cl2. Blue, black, green, and purple balls represent Ti, C, T, and Li atoms, respectively; Colorful figures are available on website
Fig. 8 (a) Schematic illustration of the diffusion path of Liion, (b) corresponding energy profiles and configurations of transition states, (c) atomic structures and interlayer distances at initial and transition states of D33-Ti3C2Cl2 during interlayer Li-ion migration. Blue, black and green balls represent Ti, C and T atoms, respectively. 1 Å =0.1 nm; Colorful figures are available on website
[1] |
NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films. Science, 2004, 306(5696): 666-669.
DOI URL |
[2] |
ZHANG F, WAN L, CHEN J, et al. Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochimica Acta, 2018, 280: 86-93.
DOI URL |
[3] |
JIN Y, ZHU B, LU Z, et al. Challenges and recent progress in the development of Si anodes for lithium-ion battery. Advanced Energy Materials, 2017, 7(23): 1700715.
DOI URL |
[4] | KOZMENKOVA A Y, TIMOFEEVA V A, MANKAEV B N, et al. The redox properties of germylenes stabilized by N-donor ligands. European Journal of Inorganic Chemistry, 2021, 27: 2755-2763. |
[5] |
ZHANG K L, CHEN F, PAN H, et al. Study on the effect of transition metal sulfide in lithium-sulfur battery. Inorganic Chemistry Frontiers, 2019, 6(2): 477-481.
DOI URL |
[6] |
ZHAO J, ZHANG Y, WANG Y, et al. The application of nanostructured transition metal sulfides as anodes for lithium ion batteries. Journal of Energy Chemistry, 2018, 27(6): 1536-1554.
DOI URL |
[7] |
NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 2011, 23(37): 4248-4253.
DOI URL |
[8] |
ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2017, 2(2): 16098.
DOI URL |
[9] |
NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: a new family of two-dimensional materials. Advanced Materials, 2014, 26(7): 992-1005.
DOI URL |
[10] |
LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2. Materials Science and Engineering: B, 2015, 191: 33-40.
DOI URL |
[11] |
HANTANASIRISAKUL K, ZHAO M Q, URBANKOWSKI P, et al. Fabrication of Ti3C2 MXene transparent thin films with tunable optoelectronic properties. Advanced Electronic Materials, 2016, 2(6): 1600050.
DOI URL |
[12] |
ZHANG C F, ANASORI B, SERAL-ASCASO A, et al. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Advanced Materials, 2017, 29(36): 1702678.
DOI URL |
[13] |
LING Z, REN C E, ZHAO M Q, et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proceedings of the National Academy of Sciences, 2014, 111(47): 16676-16681.
DOI URL |
[14] |
HU M, HU T, LI Z, et al. Surface functional groups and interlayer water determine the electrochemical capacitance of Ti3C2Tx MXene. ACS Nano, 2018, 12(4): 3578-3586.
DOI URL |
[15] | WEI S Q, WANG C D, ZHANG P J, et al. Mn2+ intercalated V2C MXene for enhanced sodium ion battery. Journal of Inorganic Materials, 2020, 35(1): 139-144. |
[16] | MA B, LI M, CHENG L, et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 2020, 35(1): 131-138. |
[17] | MOSTAFA G, YADOLLAH Y, KOBRA Z M. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Microchimica Acta, 2020, 187(10): 2145-2148. |
[18] | LI T, HUANG L, YAN X, et al. Ti3C2Tx/wood carbon as high- areal-capacity electrodes for supercapacitors. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[19] | MA Y, LIU Y, YU C, et al. Monolayer Ti3C2Tx nanosheets with different lateral dimension: preparation and electrochemical property. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[20] |
TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. Journal of the American Chemical Society, 2012, 134(40): 16909-16916.
DOI URL |
[21] |
LIANG M, ZHI L. Graphene-based electrode materials for rechargeable lithium. Journal of Materials Chemistry, 2009, 19(33): 5871-5878.
DOI URL |
[22] |
ZHANG X, ZHANG Z, ZHOU Z. MXene-based materials for electrochemical energy storage. Journal of Energy Chemistry, 2017, 27(1): 73-85.
DOI URL |
[23] |
MASHTALIR O, LULATSKAYA M R, ZHAO M Q, et al. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Advanced Materials, 2015, 27(23): 3501-3506.
DOI URL |
[24] |
LI D, CHEN X, XIANG P, et al. Chalcogenated-Ti3C2X2 MXene (X=O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Applied Surface Science, 2020, 501(31): 144221.
DOI URL |
[25] |
MENG Q, MA J, ZHANG Y, et al. The S-functionalized Ti3C2 MXene as a high capacity electrode material for Na-ion batteries: a DFT study. Nanoscale, 2018, 10(7): 3385-3392.
DOI URL |
[26] |
LI R, ZHAO P, QIN X, et al. First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surfaces and Interfaces, 2020, 21: 100788.
DOI URL |
[27] |
DELLEY B. An all-electron numerical method for solving the local density functional for polyatomic molecules. The Journal of Chemical Physics, 1990, 92(1): 508-517.
DOI URL |
[28] |
DELLEY B. From molecules to solids with the DMol3 approach. The Journal of Chemical Physics, 2000, 113(18): 7756-7764.
DOI URL |
[29] |
DZYALOSHINSKII I E, LIFSHITZ E M, PITAEVSKII L P. General theory of van Der Waals’ forces. Soviet Physics Uspekhi, 1961, 4(2): 153-176.
DOI URL |
[30] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18): 3865.
DOI URL |
[31] |
KOELLING D D, HARMON B N. A technique for relativistic spin-polarised calculations. Journal of Physics C: Solid State Physics, 1977, 10: 3107.
DOI URL |
[32] |
HENDRIK J M, JAMES D P. Special points for Brillouin-zone integrations. Physical Review B, 1976, 13(12): 5188-5192.
DOI URL |
[33] | LI Y, WU D, ZHOU Z, et al. Enhanced Li adsorption and diffusion on MoS2 zigzag nanoribbons by edge effects: a computational study. Physical Review Letters, 2012, 3(16): 2221-2227. |
[34] |
ZHANG H, XIN X, LIU H, et al. Enhancing lithium adsorption and diffusion toward extraordinary lithium storage capability of freestanding Ti3C2Tx MXene. The Journal of Physical Chemistry C, 2019, 123(5): 2792-2800.
DOI URL |
[35] |
HU T, WANG J, ZHANG H, et al. Vibrational properties of Ti3C2 and Ti3C2T2 (T= O, F, OH) monosheets by first-principles calculations: a comparative study. Physical Chemistry Chemical Physics, 2015, 17: 9997-10003.
DOI URL |
[36] |
LI L. Lattice dynamics and electronic structures of Ti3C2O2 and Mo2TiC2O2 (MXenes): the effect of Mo substitution. Computational Materials Science, 2016, 124: 8-14.
DOI URL |
[37] |
ZHAO D, CLITES M, YING G, et al. Alkali-induced crumpling of Ti3C2Tx (MXene) to form 3D porous networks for sodium ion storage. Chemical Communications, 2018, 54(36): 4533-4536.
DOI URL |
[38] |
ZHANG K, YING G, LIU L, et al. Three-dimensional porous Ti3C2Tx-NiO composite electrodes with enhanced electro-chemical performance for supercapacitors. Materials, 2019, 12(1): 188.
DOI URL |
[39] |
FU Z, ZHANG Q, LEGUT D, et al. Stabilization and strengthening effects of functional groups in two-dimensional titanium carbide. Physical Review B, 2016, 94(10): 104103.
DOI URL |
[40] |
NAKADA K, ISHII A. Migration of adatom adsorption on graphene using DFT calculation. Solid State Communications, 2011, 151(1): 13-16.
DOI URL |
[41] |
XU B, LU H S, LIU B, et al. Comparisons between adsorption and diffusion of alkali, alkaline earth metal atoms on silicene and those on silicane: insight from first-principles calculations. Chinese Physics B, 2016, 25(6): 067103.
DOI URL |
[42] |
TRITSARIS G A, KAXIRAS E, MENG S, et al. Adsorption and diffusion of lithium on layered silicon for Li-ion storage. Nano Letters, 2013, 13(5): 2258-2263.
DOI URL |
[43] |
JING Y, ZHOU Z, CABRERA C R, et al. Metallic VS2 monolayer: a promising 2D anode material for lithium ion batteries. The Journal of Physical Chemistry C, 2013, 117(48): 25409-25413.
DOI URL |
[44] |
XIE Y, DALL’AGNESE Y, NAGUIB M, et al. Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. ACS Nano, 2014, 8(9): 9606-9615.
DOI URL |
[45] |
XIE Y, NAGUIB M, MOCHALIN V N, et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. Journal of the American Chemical Society, 2014, 136(17): 6385-6394.
DOI URL |
[46] |
EAMES C, ISLAM M S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. Journal of the American Chemical Society, 2014, 136: 16270-16276.
DOI URL |
[47] |
KOUDRIACHOVA M V, HARRISON N M, DE LEEUW S W. Open circuit voltage profile for Li-intercalation in rutile and anatase from first principles. Solid State Ionics, 2002, 152/153: 189-194.
DOI URL |
[48] |
HU J, XU B, OUYANG C, et al. Investigations on Nb2C monolayer as promising anode material for Li or non-Li ion batteries from first-principles calculations. RSC Advances, 2016, 6: 27467-27474.
DOI URL |
[49] |
SUN Q, DAI Y, MA Y, et al. Ab initio prediction and characterization of Mo2C monolayer as anodes for lithium-ion and sodium-ion batteries. The Journal of Physical Chemistry Letters, 2016, 7(6): 937-943.
DOI URL |
[1] | BAI Zhiqiang, ZHAO Lu, BAI Yunfeng, FENG Feng. Research Progress on MXenes: Preparation, Property and Application in Tumor Theranostics [J]. Journal of Inorganic Materials, 2022, 37(4): 361-375. |
[2] | XI Wen, LI Haibo. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization [J]. Journal of Inorganic Materials, 2021, 36(3): 283-291. |
[3] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[4] | LI Zhifeng, TAN Jie, YANG Xiaofei, LIN Zuhong, HUAN Zhenglai, ZHANG Tingting. Preparation and Visible Light Photocatalytic Performance of BiOBr/Ti3C2 Composite Photocatalyst with Highly Exposed (001) Facets [J]. Journal of Inorganic Materials, 2020, 35(11): 1247-1254. |
[5] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[6] | SONG Huan, WANG Lin, WANG Hong-Qing, SHI Wei-Qun. Adsorption of Eu(III) on Alkalized Ti3C2Tx MXene Studied by Batch Experiment and Its Mechanism Investigation [J]. Journal of Inorganic Materials, 2020, 35(1): 65-72. |
[7] | MA Ya-Nan, LIU Yu-Fei, YU Chen-Xu, ZHANG Chuan-Kun, LUO Shi-Jun, GAO Yi-Hua. Monolayer Ti3C2Tx Nanosheets with Different Lateral Dimension: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2020, 35(1): 93-98. |
[8] | LI Ya-Hui, ZHANG Jian-Feng, CAO Hui-Yang, ZHANG Xin, JIANG Wan. PtRu Particles Supported on Two-dimensional Titanium Carbide/Carbon Nanotubes: Preparation and Electrocatalytic Properties [J]. Journal of Inorganic Materials, 2020, 35(1): 79-85. |
[9] | YANG Yi-Na, WANG Ran-Ran, SUN Jing. MXenes in Flexible Force Sensitive Sensors: a Review [J]. Journal of Inorganic Materials, 2020, 35(1): 8-18. |
[10] | LI Teng-Fei, HUANG Lu-Jun, YAN Xu-Dong, LIU Qing-Lei, GU Jia-Jun. Ti3C2Tx/Wood Carbon as High-areal-capacity Electrodes for Supercapacitors [J]. Journal of Inorganic Materials, 2020, 35(1): 126-130. |
[11] | FAN Mao, WANG Lin, PEI Cheng-Xin, SHI Wei-Qun. Alkalization Intercalation of MXene for Electrochemical Detection of Uranyl Ion [J]. Journal of Inorganic Materials, 2019, 34(1): 85-90. |
[12] | SI Xiao-Yang, CHEN Fan-Yan, DENG Qi-Huang, DU Shi-Yu, HUANG Qing. Preparation and Property of MXene/Copper Alloy Composites [J]. Journal of Inorganic Materials, 2018, 33(6): 603-608. |
[13] | GU Feng, WANG You-Wei, ZHENG Zhi-Hui, LIU Jian-Jun, LU Wen-Cong. Catalytic Mechanism of Palladium Catalyst for the Oxidation Reduction and Evolution Reaction of Lithium-air Battery [J]. Journal of Inorganic Materials, 2018, 33(10): 1131-1135. |
[14] | ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing. Research Progress of Novel Two-dimensional Material MXene [J]. Journal of Inorganic Materials, 2017, 32(6): 561-570. |
[15] | WANG Xiao-Yuan, SHIMADA Takahiro, KITAMURA Takayuki. First-principles Calculation on Ferroelectricity and Its Coupling Behavior with Mechanical Deformation of Ultrathin PbTiO3 Nanotube [J]. Journal of Inorganic Materials, 2014, 29(3): 309-314. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||