Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 651-659.DOI: 10.15541/jim20210438
Special Issue: 【虚拟专辑】计算材料
• RESEARCH ARTICLE • Previous Articles Next Articles
SUN Ming(), SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang(), XIU Ziyang(), XIAO Haiying, WU Gaohui
Received:
2021-07-12
Revised:
2021-11-02
Published:
2022-06-20
Online:
2021-12-16
Contact:
ZHANG Qiang, professor. E-mail: zhang_tsiang@hit.edu.cn;About author:
SUN Ming (1998–), female, Master candidate. E-mail: s1257973295@163.com
Supported by:
CLC Number:
SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites[J]. Journal of Inorganic Materials, 2022, 37(6): 651-659.
Fig. 1 GO(Gr) atomic model and Al/GO(Gr)/Al interface model (a) Gr atom model; (b-e) GO atomic models with C/O ratios of 24 : 1, 12 : 1, 8 : 1, and 6 : 1, respectively; (f) Al/Gr/Al interface model; (g-j) Al/GO/Al interface models with C/O ratios of 24 : 1, 12 : 1, 8:1, and 6 : 1, respectively
Fig. 2 GO atom model and Al/GO/Al interface model both with defects (a) GO with single-vacancy defect; (b) GO with double-vacancy defect; (c) GO with Stone-Wales defect; (d) Al/GO/Al interface model with single-vacancy defect; (e) Al/GO/Al interface model with double- vacancy defect; (f) Al/GO/Al interface model with Stone-Wales defect
Interface model | EAl/GO(Gr)/Al/eV | Wad/(J·m-2) | Eint/(J·m-2) |
---|---|---|---|
Al/Gr/Al | -7790.9254 | 2.1894 | -2.1918 |
Al/GO(1)/Al | -8230.1766 | 2.8727 | -3.2239 |
Al/GO(2)/Al | -8668.9362 | 3.5572 | -4.1941 |
Al/GO(3)/Al | -9108.2092 | 4.2686 | -5.2290 |
Table 1 Calculation results of energy at the interface of Al/GO(Gr)/Al interface model
Interface model | EAl/GO(Gr)/Al/eV | Wad/(J·m-2) | Eint/(J·m-2) |
---|---|---|---|
Al/Gr/Al | -7790.9254 | 2.1894 | -2.1918 |
Al/GO(1)/Al | -8230.1766 | 2.8727 | -3.2239 |
Al/GO(2)/Al | -8668.9362 | 3.5572 | -4.1941 |
Al/GO(3)/Al | -9108.2092 | 4.2686 | -5.2290 |
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Interface | 1.28 | 1.70 | 0.02 |
C | Interface | 1.05 | 2.98 | -0.03 |
Table 2 Mulliken populations of Al/Gr/Al interface model
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Interface | 1.28 | 1.70 | 0.02 |
C | Interface | 1.05 | 2.98 | -0.03 |
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Location 1 | 1.04 | 1.50 | 0.46 |
Location 2 | 1.28 | 1.70 | 0.02 | |
O | Interface | 1.88 | 5.10 | -0.98 |
C | Interface | 1.05 | 2.97 | -0.03 |
Table 3 Mulliken populations of Al/GO/Al interface model
Atom | Location | s | p | Charge/e |
---|---|---|---|---|
Al | Location 1 | 1.04 | 1.50 | 0.46 |
Location 2 | 1.28 | 1.70 | 0.02 | |
O | Interface | 1.88 | 5.10 | -0.98 |
C | Interface | 1.05 | 2.97 | -0.03 |
Fig. 9 Electron density difference of Al/GO/Al with different defects (a, b) Single-vacancy defect in YZ direction; (c, d) Single-vacancy defect in vertical Z direction; (e, f) Double-vacancy defect in YZ direction; (g, h) Double-vacancy defect in vertical Z direction; (I, j) Stone-Wales defect in YZ direction; (k, l) Stone-sWales defect in vertical Z direction
Model | Atom | Position | s | p | Charge /e |
---|---|---|---|---|---|
SV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.02 | 1.58 | 0.41 | ||
Al3 | 1.22 | 1.65 | 0.13 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.24 | 3.13 | -0.38 | |
C2-C3 | 1.10-1.19 | 2.97-2.91 | -0.07- -0.10 | ||
DV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.22 | 1.63 | 0.15 | ||
Al3 | 1.22 | 1.71 | 0.07 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.20 | 2.94 | -0.14 | |
C2-C4 | 1.06-1.18 | 2.99-2.91 | -0.05- -0.09 | ||
SW | Al | Al1 | 1.05 | 1.45 | 0.50 |
Al2 | 1.07 | 1.60 | 0.33 | ||
Al3 | 1.22 | 1.68 | 0.10 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.15 | 3.09 | -0.24 | |
C2 | 1.08 | 3.04 | -0.12 |
Table 4 Mulliken populations of Al/GO/Al with defects
Model | Atom | Position | s | p | Charge /e |
---|---|---|---|---|---|
SV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.02 | 1.58 | 0.41 | ||
Al3 | 1.22 | 1.65 | 0.13 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.24 | 3.13 | -0.38 | |
C2-C3 | 1.10-1.19 | 2.97-2.91 | -0.07- -0.10 | ||
DV | Al | Al1 | 1.05 | 1.47 | 0.48 |
Al2 | 1.22 | 1.63 | 0.15 | ||
Al3 | 1.22 | 1.71 | 0.07 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.20 | 2.94 | -0.14 | |
C2-C4 | 1.06-1.18 | 2.99-2.91 | -0.05- -0.09 | ||
SW | Al | Al1 | 1.05 | 1.45 | 0.50 |
Al2 | 1.07 | 1.60 | 0.33 | ||
Al3 | 1.22 | 1.68 | 0.10 | ||
O | O | 1.87 | 5.12 | -0.99 | |
C | C1 | 1.15 | 3.09 | -0.24 | |
C2 | 1.08 | 3.04 | -0.12 |
Fig. 10 GO atom model with defects (a-c) and corresponding electron density difference (d-f) at the interface of Al/GO/Al model (a, d) Single-vacancy; (b, e) Double-vacancy; (c, f) Stone-Wales defects
[1] | LIU J H, KHAN U, COLEMAN J, et al. Graphene oxide and graphene nanosheet reinforced aluminium matrix composites: powder synthesis and prepared composite characteristics. Materials & Design, 2016, 94(5): 87-94. |
[2] |
GHASALI E, SANGPOUR P, JAM A, et al. Microwave and spark plasma sintering of carbon nanotube and graphene reinforced aluminum matrix composite. Archives of Civil and Mechanical Engineering, 2018, 18(4): 1042-1054.
DOI URL |
[3] | ZHANG C X, ZENG Y P, YAO D X, et al. The improved mechanical properties of Al matrix composites reinforced with oriented β-Si3N4 whisker. Journal of Materials Science & Technology, 2019, 35(7): 1345-1353. |
[4] |
ZHANG L, HOU GM, ZHAI W, et al. Aluminum/graphene composites with enhanced heat-dissipation properties by in-situ reduction of graphene oxide on aluminum particles. Journal of Alloys and Compounds, 2018, 748: 854-860.
DOI URL |
[5] | XU Z, BANDO Y, LIU L, et al. Electrical conductivity, chemistry, and bonding alternations under graphene oxide to graphene transition as revealed by in situ TEM. ACS Nano, 2011, 6(5): 4401-4406. |
[6] |
CASTRO-NETO A H, GUINEA F, PERES N M R, et al. The electronic properties of graphene. Reviews of Modern Physics, 81(1): 109-162.
DOI URL |
[7] |
LEE C, WEI X D, KVSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385-388.
DOI URL |
[8] |
CAO M, LUO Y Z, XIE Y Q, et al. The influence of interface structure on the electrical conductivity of graphene embedded in aluminum matrix. Advanced Materials Interfaces, 2019, 6(13): 1900468.
DOI URL |
[9] | 林启民, 崔建功, 鑫颜, 等. 单点缺陷氧化石墨烯电子结构与光学特性的第一性原理研究. 物理学报, 2020, 35(10): 1117-1122. |
[10] |
KUANG D, HU W B. Research progress of graphene composites. Journal of Inorganic Materials, 2013, 28(3): 235-246.
DOI |
[11] |
HWANG J, YOON T, JIN S H, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Advanced Materials, 2013, 25(46): 6724-6729.
DOI URL |
[12] | ZHANG X, SHI C S, LIU E Z, et al. Effect of interface structure on the mechanical properties of graphene nanosheets reinforced copper matrix composites. ACS Applied Materials & Interfaces, 2018, 10(43): 37586-37601. |
[13] |
ZHANG X, SHI C S, LIU E Z, et al. Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network. Nanoscale, 2017, 9(33): 11929-11938.
DOI URL |
[14] |
AZAR M H, SADRI B, NEMATI A, et al. Investigating the microstructure and mechanical properties of aluminum-matrix reinforced-graphene nanosheet composites fabricated by mechanical milling and equal-channel angular pressing. Nanomaterials, 2019, 9(8): 1070.
DOI URL |
[15] |
WANG J Y, LI Z Q, FAN G L, et al. Reinforcement with graphene nanosheets in aluminum matrix composites. Scripta Materialia, 2012, 66(8): 594-597.
DOI URL |
[16] |
ZHOU H T, XIONG X Y, LUO F, et al. The study of the in-situ deposition technique for fabricating. Acta Physica Sinica, 2021, 70(8): 086201.
DOI URL |
[17] |
GAO X, YUE H Y, GUO E J, et al. Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites. Materials and Design, 2016, 94: 54-60.
DOI URL |
[18] |
JIANG Y Y, TAN Z Q, XU R, et al. Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling. Composites Part A: Applied Science and Manufacturing, 2018, 111: 73-82.
DOI URL |
[19] |
LI Z, GUO Q, LI Z Q, et al. Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure. Nano Letters, 2015, 15(12): 8077-8083.
DOI URL |
[20] | 何小晶, 原梅妮, 李立州, 等. 石墨烯增强钛基复合材料界面的第一性原理研究. 热加工工艺, 2018, 47(10): 96-100. |
[21] |
CHEN Y T, LIU X H, ZHANG T B, et al. Interface intrinsic strengthening mechanism on the tensile properties of Al2O3/Al composites. Computational Materials Science, 2019, 169: 109131.
DOI URL |
[22] |
XIE H N, CHEN Y T, ZHANG T B, et al. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: a first principles study. Applied Surface Science, 2020, 527: 146817.
DOI URL |
[23] |
LIU P, XIE J P, WANG A Q, et al. First-principles prediction of enhancing graphene/Al interface bonding strength by graphene doping strategy. Applied Surface Science, 2020, 517: 146040.
DOI URL |
[24] |
ZHANG X, WANG S Q. Interfacial strengthening of graphene/ aluminum composites through point defects: a first-principles study. Nanomaterials, 2021, 11(3): 738-752.
DOI URL |
[25] |
TKACHEV S V, BUSLAEVA E Y, NAUMKIN A V, et al. Reduced graphene oxide. Inorganic Materials, 2012, 48(8): 796-802.
DOI URL |
[26] |
SHEN J F, HU Y Z, SHI M, et al. Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 2009, 21(15): 3514-3520.
DOI URL |
[27] |
ZHAO Z Y, ZHAO W J, BAI P K, et al. The interfacial structure of Al/Al4C3 in graphene/Al composites prepared by selective laser melting: first-principles and experimental. Materials Letters, 2019, 255: 126559.
DOI URL |
[28] |
WU Y H, ZHAN K, YANG Z, et al. Graphene oxide/Al composites with enhanced mechanical properties fabricated by simple electrostatic interaction and powder metallurgy. Journal of Alloys and Compounds, 2019, 775: 233-240.
DOI URL |
[29] |
KIM D, NAM S, ROH A, et al. Effect of interfacial features on the mechanical and electrical properties of rGO/Al composites. Journal of Materials Science, 2017, 52(20): 12001-12012.
DOI URL |
[30] |
JU J M, WANG G, SIM K H. Facile synthesis of graphene reinforced Al matrix composites with improved dispersion of graphene and enhanced mechanical properties. Journal of Alloys and Compounds, 2017, 704: 585-592.
DOI URL |
[31] |
CHEN Y C, LIU Y, ZHOU F, et al. The interface properties of defective graphene on aluminium: a first-principles calculation. Computational Materials Science, 2021, 188: 110157.
DOI URL |
[1] | ZHANG Shouchao, CHEN Hongyu, LIU Hongfei, YANG Yu, LI Xin, LIU Defeng. High Temperature Recovery of Neutron Irradiation-induced Swelling and Optical Property of 6H-SiC [J]. Journal of Inorganic Materials, 2023, 38(6): 678-686. |
[2] | YANG Yingkang, SHAO Yiqing, LI Bailiang, LÜ Zhiwei, WANG Lulu, WANG Liangjun, CAO Xun, WU Yuning, HUANG Rong, YANG Chang. Enhanced Band-edge Luminescence of CuI Thin Film by Cl-doping [J]. Journal of Inorganic Materials, 2023, 38(6): 687-692. |
[3] | FENG Qingying, LIU Dong, ZHANG Ying, FENG Hao, LI Qiang. Thermodynamic and First-principles Assessments of Materials for Solar-driven CO2 Splitting Using Two-step Thermochemical Cycles [J]. Journal of Inorganic Materials, 2022, 37(2): 223-229. |
[4] | ZHANG Xiaojun, LI Jiale, QIU Wujie, YANG Miaosen, LIU Jianjun. Electrochemical Activity of Positive Electrode Material of P2-Nax[Mg0.33Mn0.67]O2 Sodium Ion Battery [J]. Journal of Inorganic Materials, 2021, 36(6): 623-628. |
[5] | ZHAO Yupeng,HE Yong,ZHANG Min,SHI Junjie. First-principles Study on the Photocatalytic Hydrogen Production of a Novel Two-dimensional Zr2CO2/InS Heterostructure [J]. Journal of Inorganic Materials, 2020, 35(9): 993-998. |
[6] | LI Jin, LIU Ting-Yu, YAO Shu-An, FU Ming-Xue, LU Xiao-Xiao. First Principles Study on the Property of O Vacancy in LuPO4 Crystal [J]. Journal of Inorganic Materials, 2019, 34(8): 879-884. |
[7] | LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review [J]. Journal of Inorganic Materials, 2019, 34(3): 236-246. |
[8] | ZOU Ai-Hua, ZHOU Xian-Liang, KANG Zhi-Bing, RAO You-Hai, WU Kai-Yang. Alloy Elements on SiC/Al Interface: a First-principle and Experimental Study [J]. Journal of Inorganic Materials, 2019, 34(11): 1167-1174. |
[9] | WANG Zhong, ZHA Xian-Hu, WU Ze, HUANG Qing, DU Shi-Yu. First-principles Study on Electronic and Magnetic Properties of Mn-doped Strontium Ferrite SrFe12O19 [J]. Journal of Inorganic Materials, 2019, 34(10): 1047-1054. |
[10] | CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, LI Fu-Shen, BIAN Liu-Zhen, CHOU Kuo-Chih. Optimal Principle on Composition of B Site Elements in Perovskite Electrodes with Sr at A Site for Solid Oxide Fuel Cell [J]. Journal of Inorganic Materials, 2017, 32(10): 1055-1062. |
[11] | CHANG Xi-Wang, CHEN Ning, WANG Li-Jun, BIAN Liu-Zhen, LI Fu-Shen, CHOU Kuo-Chih. Optimization Rule of Anode Materials for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2015, 30(10): 1043-1048. |
[12] | QIU Rui-Hao, LI Yong-Xiang, ZHANG Wen-Qing. Phase Competition in Bismuth Layered Structure Based on First Principles Thermodynamics [J]. Journal of Inorganic Materials, 2014, 29(11): 1156-1160. |
[13] | YING Yan-Jun, CHENG Li-Fang, ZENG Xiao-Qin, ZOU Jian-Xin, DING Wen-Jiang. Theoretical and Experimental Investigations of the Effect of Co Addition on the Structural and Properties of AB3.5-type Hydrogen Storage Alloys [J]. Journal of Inorganic Materials, 2012, 27(6): 568-574. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||