Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1316-1322.DOI: 10.15541/jim20210125
Special Issue: 【生物材料】骨骼与齿类组织修复
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Dawei1(), ZHU Liyuan2, LU Hongliang2, WANG Zuolin1()
Received:
2021-03-03
Revised:
2021-04-07
Published:
2021-12-20
Online:
2021-04-30
Contact:
WANG Zuolin, professor. E-mail: zuolin@tongji.edu.cn
About author:
ZHANG Dawei(1994-), male, Master candidate. E-mail: david_zhang@tongji.edu.cn
Supported by:
CLC Number:
ZHANG Dawei, ZHU Liyuan, LU Hongliang, WANG Zuolin. Titanium Modified with ZnO Nanofilm and Fibronectin: Preventing Peri-implantitis and Biocompatibility[J]. Journal of Inorganic Materials, 2021, 36(12): 1316-1322.
Fig. 1 (a) Schematic diagram of fabrication progress of Ti/ZnO and Ti/ZnO/Fn, and SEM images of (b, e) Ti, (c, f) Ti/ZnO and (d, g) Ti/ZnO/Fn at low (b-d) and high (e-g) magnification ALD: Atomic layer deposition
Fig. 2 (a) XPS spectra of Ti, Ti/ZnO, and Ti/ZnO/Fn, (b) high-resolution spectra of N1s peak of Ti, Ti/ZnO, Ti/ZnO/APTES, and Ti/ZnO/Fn, and (c) FT-IR spectra of Ti/ZnO/APTES and Ti/ZnO/Fn Ti/ZnO/APTES: Ti disc with ZnO nanofilm modified with APTES
Fig. 3 Antibacterial effects and mechanisms of Ti, Ti/ZnO, and Ti/ZnO/Fn against A. a and P. g for 24 h (a) Typical bacteria colonies of A. a and P. g on Ti, Ti/ZnO, and Ti/ZnO/Fn (left) with average corresponding antibacterial rates (right); (b) Fluorecent images of dead bacteria (red) and total bacteria (green) on surfaces of Ti, Ti/ZnO, and Ti/ZnO/Fn after incubation (left) and their dead/total ratio (right); (c) Cumulative zinc ion release curves of Ti/ZnO and Ti/ZnO/Fn A. a: Aggregatibacter actinomycetemcomitans; P. g: Porphyro-monas gingivalis. The error bars indicate standard deviations. *P < 0.05, **P < 0.01, and ***P < 0.005 (n=3, One-way ANOVA)
Fig. 4 Cytocompatibility of Ti/ZnO/Fn on human gingival fibroblasts (a) Fluorescent images of hGFs cultured on Ti, Ti/ZnO and Ti/ZnO/Fn for 6 and 12 h with vinculin staining (red) and nuclei staining (blue); (b) SEM images of hGFs attachment on Ti, Ti/ZnO and Ti/ZnO/Fn for 6 and 12 h; (c) Quantitative measurement of spreading area of hGFs on Ti, Ti/ZnO and Ti/ZnO/Fn after 6 and 12 h culture; (d) Cell viabilities cultured on Ti, Ti/ZnO and Ti/ZnO/Fn after 1, 3 and 7 d hGFs: human gingival fibroblasts. Error bars indicate standard deviations. **P < 0.01, and ***P < 0.005 (n=3, One-way ANOVA)
Fig. 5 Quantification of the gene expression of (a) Col1, (b) Col3 and (c) ITGB1a in hGFs on Ti, Ti/ZnO and Ti/ZnO/Fn for 3 d by qPCR Data are normalized against reference gene expression of glyceraldehyde- 3-phosphate dehydrogenase and standardized with Ct (cycle threshold) of Ti. Error bars indicate standard deviations. **P < 0.01 and ***P < 0.005 (n=3, One-way ANOVA)
Fig. 6 (a) Sagittal pictures of Micro-CT, (b) H&E-stained tissues around screws, and (c) quantification of the gene expression of IL1β, Arg1, TNFα, IL4, and TGFβ1 by qPCR in gingiva tissues around Ti, Ti/ZnO and Ti/ZnO/Fn screws after being inserted into maxillae of rats for 4 w Data are normalized against reference gene expression of glyceraldehyde-3-phosphate dehydrogenase and standardized with Ct of control. Control: Ti screws infused with bacteria culture medium; Ti, Ti/ZnO and Ti/ZnO/Fn: Ti, Ti/ZnO and Ti/ZnO/Fn screws infused with mixed bacterial suspension. Error bars indicate standard deviations. *P < 0.05, **P < 0.01, and ***P < 0.005 (n=3, One-way ANOVA)
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (3′-5′) |
---|---|---|
GAPDH | GCACCGTCAAGGCTGAGAAC | TGGTGAAGACGCCAGTGGA |
Col1 | TCTAGACATGTTCAGCTTTGTGGAC | TCTGTACGCAGGTGATTGGTG |
Col3 | GCAAATTCACCTACACAGTTCTGGA | CTTGATCAGGACCACCAATGTCATA |
ITGB1α | TGTGTCAGACCTGCCTTGGTG | AGGAACATTCCTGTGTGCATGTG |
Table S1 Specific forward and reverse primer sequences of detected genes of HGFs
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (3′-5′) |
---|---|---|
GAPDH | GCACCGTCAAGGCTGAGAAC | TGGTGAAGACGCCAGTGGA |
Col1 | TCTAGACATGTTCAGCTTTGTGGAC | TCTGTACGCAGGTGATTGGTG |
Col3 | GCAAATTCACCTACACAGTTCTGGA | CTTGATCAGGACCACCAATGTCATA |
ITGB1α | TGTGTCAGACCTGCCTTGGTG | AGGAACATTCCTGTGTGCATGTG |
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (3′-5′) |
---|---|---|
GAPDH | CCCCAATGTATCCGTTGTG | CTCAGTGTAGCCCAGGATGC |
IL1β | GACCTGTTCTTTGAGGCTGACA | CTCATCTGGACAGCCCAAGTC |
Arg1 | AGCAGAGACCCAGAAGAATG | TTTCCTTTCAGTTCCTTCAG |
TNFα | GACAAGGCTGCCCCGACTAT | GGGAGACTCCTCCCAGGTACA |
IL4 | TCGCTTGCCTTGGTGGTC | TGTGATGTTGCTCAGCTCCTC |
TGFβ1 | AGGACCTGGGTTGGAAGTGG | AGTTGGCATGGTAGCCCTTG |
Table S2 Specific forward and reverse primer sequences of detected genes of rat
Gene | Forward primer sequence (5′-3′) | Reverse primer sequence (3′-5′) |
---|---|---|
GAPDH | CCCCAATGTATCCGTTGTG | CTCAGTGTAGCCCAGGATGC |
IL1β | GACCTGTTCTTTGAGGCTGACA | CTCATCTGGACAGCCCAAGTC |
Arg1 | AGCAGAGACCCAGAAGAATG | TTTCCTTTCAGTTCCTTCAG |
TNFα | GACAAGGCTGCCCCGACTAT | GGGAGACTCCTCCCAGGTACA |
IL4 | TCGCTTGCCTTGGTGGTC | TGTGATGTTGCTCAGCTCCTC |
TGFβ1 | AGGACCTGGGTTGGAAGTGG | AGTTGGCATGGTAGCCCTTG |
Sample | C1s/% | O1s/% | N1s/% | Si2p3/% | Ti2p3/% | Zn2p3/% |
---|---|---|---|---|---|---|
Ti | 57.69 | 31.07 | 1.92 | 0.02 | 9.26 | 0.05 |
Ti/ZnO | 38.94 | 37.22 | 2.26 | 0.08 | 1.07 | 20.44 |
Ti/ZnO/Fn | 63.91 | 21.2 | 11.88 | 2.27 | 0.13 | 0.6 |
Table S3 Elemental chemical composition of Ti, Ti/ZnO and Ti/ZnO/Fn
Sample | C1s/% | O1s/% | N1s/% | Si2p3/% | Ti2p3/% | Zn2p3/% |
---|---|---|---|---|---|---|
Ti | 57.69 | 31.07 | 1.92 | 0.02 | 9.26 | 0.05 |
Ti/ZnO | 38.94 | 37.22 | 2.26 | 0.08 | 1.07 | 20.44 |
Ti/ZnO/Fn | 63.91 | 21.2 | 11.88 | 2.27 | 0.13 | 0.6 |
Fig. S1 Reactive oxygen species (ROS) detected by fluorescence probes in bacteria cultured on materials for 24 h (a) Fluorescent images of ROS in A. a and P. g cultured on Ti/ZnO and Ti/ZnO/Fn; (b) Quantitative measurement of area of ROS in A. a and P. g Error bars indicate standard deviations: *P < 0.05 (n=3, Student’s t test)
[1] |
SIMONIS PIERRE, DUFOUR THOMAS, TENENBAUM HENRI. Long-term implant survival and success: a 10-16-year follow-up of non-submerged dental implants. Clin. Oral Implants Res., 2010, 21(7): 772-777.
DOI URL |
[2] |
DIXON DOUGLAS R, LONDON ROBERT M. Restorative design and associated risks for peri-implant diseases. Periodontol 2000, 2019, 81(1): 167-178.
DOI URL |
[3] |
DAUBERT DIANE M, WEINSTEIN BRADLEY F. Biofilm as a risk factor in implant treatment. Periodontol 2000, 2019, 81(1): 29-40.
DOI URL |
[4] |
DE WAAL Y C, EIJSBOUTS H V, WINKEL E G, et al. Microbial characteristics of peri-implantitis: a case-control study. J. Periodontol, 2017, 88(2): 209-217.
DOI URL |
[5] |
DE AVILA ERICA DORIGATTI, LIMA BRUNO P, SEKIYA TAKEO, et al. Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material. Biomaterials, 2015, 67: 84-92.
DOI URL |
[6] |
SOBOLEV ALEXANDER, VALKOV ANTON, KOSSENKO ALEXEY, et al. Bioactive coating on Ti alloy with high osseointegration and antibacterial nanoparticles. ACS Appl. Mater. Interfaces, 2019, 11(43): 39534-39544.
DOI URL |
[7] |
YUAN ZHANG, TAO BAILONG, HE YE, et al. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy. Biomaterials, 2019, 223: 119479.
DOI URL |
[8] |
ALQATTAN M, PETERS L, YANG F, et al. Microstructure, mechanical behaviour and antibacterial activity of biomedical Ti-xMn-yCu alloys. J. Alloys Compd., 2021, 856: 158165.
DOI URL |
[9] |
DIEFENBECK M, SCHRADER C, GRAS F, et al. Gentamicin coating of plasma chemical oxidized titanium alloy prevents implant-related osteomyelitis in rats. Biomaterials, 2016, 101: 156-164.
DOI URL |
[10] |
LI BAOE, ZHANG LEI, WANG DONGHUI, et al. Thermosensitive-hydrogel-coated titania nanotubes with controlled drug release and immunoregulatory characteristics for orthopedic applications. Mat. Sci. Eng. C-Mater., 2021, 122: 111878.
DOI URL |
[11] |
KUMAR RAJESH, UMAR AHMAD, KUMAR GIRISHE, et al. Antimicrobial properties of ZnO nanomaterials: a review. Ceram. Int., 2017, 43(5): 3940-3961.
DOI URL |
[12] | YU FEN, FANG XUAN, JIA HUIMIN, et al. Zn or O? An atomic level comparison on antibacterial activities of zinc oxides. Chemistry, 2016, 22(24): 8053-8058. |
[13] | ZHU LIYUAN, YUAN KAIPING, YANG JIAHE, et al. Hierarchical highly ordered SnO2 nanobowl branched ZnO nanowires for ultrasensitive and selective hydrogen sulfide gas sensing. Microsystems & Nanoengineering, 2020, 6(1): 30-43. |
[14] |
JIAN SHENGRUI, LEE YAHUI. Nanoindentation-induced interfacial fracture of ZnO thin films deposited on Si(111) substrates by atomic layer deposition. J. Alloys Compd., 2014, 587: 313-317.
DOI URL |
[15] |
TAPILY K, GU D, BAUMGART H, et al. Mechanical and structural characterization of atomic layer deposition-based ZnO films. Semicond. Sci. Tech., 2011, 26(11): 115005.
DOI URL |
[16] |
LUO QIMING, CAO HUILIANG, WANG LANYU, et al. ZnO@ZnS nanorod-array coated titanium: good to fibroblasts but bad to bacteria. J. Colloid. Interface Sci., 2020, 579: 50-60.
DOI URL |
[17] | BAKHORI SITI KHADIJAH MOHD, MAHMUD SHAHROM, MASUDI SAM’AN MALIK, et al. Cytotoxicity evaluation of ZnO-eugenol (ZOE) using different ZnO structure on human gingival fibroblast. AIP Conference Proceedings, 2017, 1865(1): 020008. |
[18] |
JORDAHL STACY, SOLORIO LUIS, NEALE DYLAN B, et al. Engineered fibrillar fibronectin networks as three-dimensional tissue scaffolds. Adv. Mater., 2019, 31(46): 1904580.
DOI URL |
[19] |
MCWHORTER FRANCES Y, WANG TINGTING, NGUYEN PHOEBE, et al. Modulation of macrophage phenotype by cell shape. Proc. Natl. Acad. Sci. U S A, 2013, 110(43): 17253-17258.
DOI URL |
[20] |
LI JUN, TAN LEI, LIU XIANGMEI, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine- glycine-aspartic acid-cysteine nanorods. ACS Nano, 2017, 11(11): 11250-11263.
DOI URL |
[21] |
JIAN XIAOCHONG, HUANG WENXIU, WU DONG, et al. Effect of fibronectin-coated micro-grooved titanium surface on alignment, adhesion, and proliferation of human gingival fibroblasts. Med. Sci. Monitor., 2017, 23: 4749-4759.
DOI URL |
[22] |
KRÓL A, POMASTOWSKI P, RAFIŃSKA K, et al. Zinc oxide nanoparticles: synthesis, antiseptic activity and toxicity mechanism. Adv. Colloid. Interface Sci., 2017, 249: 37-52.
DOI URL |
[23] |
KOUTOUZIS THEOFILOS, EASTMAN CHRISTIE, CHUKKAPALLI SASANKA, et al. A novel rat model of polymicrobial peri-implantitis: a preliminary study. J. Periodontol., 2017, 88(2): e32-e41.
DOI URL |
[24] |
YAMAZAKI SEIYA, MASAKI CHIHIRO, NODAI TOMOTAKA, et al. The effects of hyperglycaemia on peri-implant tissues after osseointegration. J. Prosthodont Res., 2020, 64(2): 217-223.
DOI URL |
[1] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[2] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[3] | PAN Bichen,REN Penghe,ZHOU Tejun,CAI Zhenyang,ZHAO Xiaojun,ZHOU Hongming,XIAO Lairong. Microstructure and Property of Thermal Insulation Coating on the Carbon Fiber Reinforced Epoxy Resin Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 947-952. |
[4] | FU Ya-Kang,WENG Jie,LIU Yao-Wen,ZHANG Ke-Hong. hBMP-2 Contained Composite Coatings on Titanium Mesh Surface: Preparation and hBMP-2 Release [J]. Journal of Inorganic Materials, 2020, 35(2): 173-178. |
[5] | ZHU Ben-Bi,ZHANG Wang,ZHANG Zhi-Jian,ZHANG Jian-Zhong,IMRAN Zada,ZHANG Di. Photothermal Enhanced Photocatalytic Properties of Titanium Dioxide (B)/Glass Fiber Cloth [J]. Journal of Inorganic Materials, 2019, 34(9): 961-966. |
[6] | SU Kun, ZHANG Ya-Ru, LU Fei, ZHANG Jun, WANG Xi. Platinum Decorated Titanium Dioxide Nanosheets for Efficient Photoelectrocatalytic Hydrogeu Evolution Reaction [J]. Journal of Inorganic Materials, 2019, 34(11): 1200-1204. |
[7] | FAN Wen, WU Li-Min. Controllable Preparation of Nano-TiO2 Lens by Silicon Oil Two-step Dehydration Method [J]. Journal of Inorganic Materials, 2018, 33(12): 1337-1342. |
[8] | LIN Jing-Cheng, TANG Xiao, CHU Wan-Yi. Synthesis and Photocatalysis Property of Ultra-small TiO2 Nanoclusters in Aqueous Media [J]. Journal of Inorganic Materials, 2017, 32(8): 863-869. |
[9] | GUO Yu, LI Dong-Xin, WU Hong-Mei, JIN Yu-Jia, ZHOU Li-Dai, CHEN Qiang-Qiang. Preparation, Characterization and Catalytic Performance of Supported Titanium Silicalite-1 Zeolite Membrane Catalyst [J]. Journal of Inorganic Materials, 2017, 32(6): 631-636. |
[10] | SUN Tao, YANG Qi, YU Jia-Yu, MA Jin-Xin. Fabrication and Lithium Storage Performance of ZnO-C Three Dimensional Network Coatings [J]. Journal of Inorganic Materials, 2017, 32(5): 483-488. |
[11] | LI Cui-Xia, JIN Hai-Ze, YANG Zhi-Zhong, YANG Xuan, DONG Qi-Zheng, LI Ting-Ting. Preparation and Photocatalytic Properties of Mesoporous RGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2017, 32(4): 357-364. |
[12] | LUO Jun-Ming, WU Xiao-Hong, XU Ji-Lin. Electrolytic Composition on Wear Resistance and Corrosion Resistance of the Micro-arc Oxidation Coatings on TiCP/Ti6Al4V Composites [J]. Journal of Inorganic Materials, 2017, 32(4): 418-424. |
[13] | PENG Ming-Dong, ZHANG Yu-Zhi, SONG Li-Xin, YIN Xiao-Fu, WANG Pan-Pan, WU Ling-Nan, HU Xing-Fang. Structure and Electrochromic Properties of Titanium-doped WO3 Thin Film by Sputtering [J]. Journal of Inorganic Materials, 2017, 32(3): 287-292. |
[14] | ZHANG Jia-Min, WANG Tao, TANG Chun-Bo, WANG Qiao-Na, QIAN Hai-Mei, MIAO Run-Jie. Preparation and Property of PDA/CPP Bilayer on SLA Surfaces [J]. Journal of Inorganic Materials, 2017, 32(12): 1264-1268. |
[15] | MA Ya-Ting, LI Qiao-Ling. Preparation and Characterization of TiO2/Co3O4 Nanocomposites and Their Photocatalytic Activity for Hydrogen Evolution [J]. Journal of Inorganic Materials, 2016, 31(8): 841-844. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||