Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 617-622.DOI: 10.15541/jim20210549
Special Issue: 【生物材料】骨骼与齿类组织修复
• RESEARCH ARTICLE • Previous Articles Next Articles
WEI Ziqin1,2(), XIA Xiang2, LI Qin2, LI Guorong2, CHANG Jiang1,2()
Received:
2021-08-28
Revised:
2021-10-12
Published:
2022-06-20
Online:
2021-11-12
Contact:
CHANG Jiang, professor. E-mail: jchang@mail.sic.ac.cnAbout author:
WEI Ziqin (1996–), male, Master candidate. E-mail: 1149057072@qq.com
Supported by:
CLC Number:
WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 617-622.
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
Table 1 Raw material composition of the composite ceramics
BT | 0.9BT 0.1CS | 0.8BT 0.2CS | 0.7BT 0.3CS | 0.6BT 0.4CS | CS | |
---|---|---|---|---|---|---|
BT/g | 2.0000 | 1.8951 | 1.7782 | 1.6481 | 1.5014 | 0 |
CS/g | 0 | 0.1049 | 0.2215 | 0.3519 | 0.4986 | 2.0000 |
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
Table 2 Piezoelectric constant d33 of composite ceramics
BT | 0.9BT0.1CS | 0.8BT0.2CS | 0.7BT0.3CS | 0.6BT0.4CS | CS | |
---|---|---|---|---|---|---|
Before mineralization/(pC·N-1) | 169 | 44 | 11 | 4 | 1 | 0 |
After mineralization/(pC·N-1) | 161 | 39 | 8 | 3 | 0 | 0 |
Fig. 3 Characterization of piezoelectric properties of composite ceramics BT; (b) 0.9BT0.1CS; (c) 0.8BT0.2CS; (d) 0.7BT0.3CS; (e) 0.6BT0.4CS; (f) CS; (g) Variation trend of hysteresis loop; (h) Piezoelectric constant Colorful figures are available on website
Fig. 4 Characterization of in vitro mineralization (a-h) SEM images of different ceramics soaked in SBF for 0 and 14 d; (i-h) EDS spectra of different ceramics soaked in SBF for 14 d SBF: Simulated body fluid
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
Table 3 Surface element composition of sample after 14 d mineralization
BT/% | 0.9BT0.1CS/% | 0.8BT0.2CS/% | 0.7BT0.3CS/% | |
---|---|---|---|---|
O | 59.98 | 60.53 | 61.37 | 7.84 |
P | - | 0.74 | 0.65 | 6.81 |
Si | - | 2.57 | 7.34 | 0.23 |
Ca | - | 2.04 | 4.12 | 8.62 |
Ti | 19.97 | 17.38 | 14.42 | 2.65 |
Ba | 20.05 | 16.74 | 12.10 | 2.71 |
Ca/P | - | 2.76 | 6.34 | 1.27 |
[1] |
ANTALYA H, JOHANNA B, RUSTOM L E, et al. Bone regeneration strategies: engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials, 2018, 180: 143-162.
DOI URL |
[2] |
LOBB D C, DEGEORGE B R, CHHABRA A B. Bone graft substitutes: current concepts and future expectations. The Journal of Hand Surgery, 2019, 44(6): 497-505.
DOI URL |
[3] |
MAAZOUZ Y, CHIZZOLA G, DOBELIN N, et al. Cell-free, quantitative mineralization measurements as a proxy to identify osteoinductive bone graft substitutes. Biomaterials, 2021, 275: 120912.
DOI URL |
[4] |
HENCH L L, POLAK J M. Third-generation biomedical materials. Science, 2002, 295(5557): 1014-1017.
DOI URL |
[5] |
FUKADA E, YASUDA I. On the piezoelectric effect of bone. Journal of the Physical Society of Japan, 1957, 12(10): 1158-1162.
DOI URL |
[6] |
BASSETT C A L, BECKER R O. Generation of electric potentials by bone in response to mechanical stress. Science, 1962, 137(3535): 1063-1064.
PMID |
[7] |
FUKADA E, YASUDA I. Piezoelectric effects in collagen. Japanese Journal of Applied Physics, 1964, 3(8): 117-121.
DOI URL |
[8] |
PARK J B, RECUM A F V, KENNER G H, et al. Piezoelectric ceramic implants-a feasibility study. Journal of Biomedical Materials Research, 1980, 14(3): 269-277.
DOI URL |
[9] | ATTILIO M, JONATHAN B, GIUSEPPE D V, et al. Two-photon lithography of 3D nanocomposite piezoelectric scaffolds for cell stimulation. ACS Applied Materials & Interfaces, 2015, 7(46): 25574-25579. |
[10] |
BUSUIOC C, OLARET E, STANCU I C, et al. Electrospun fibre webs templated synthesis of mineral scaffolds based on calcium phosphates and barium titanate. Nanomaterials, 2020, 10: 772.
DOI URL |
[11] | KHARE D, BASU B, DUBEY A K. Electrical stimulation and piezoelectric biomaterials for bone tissue engineering applications. Biomaterials, 2020, 258: 120280-1-25. |
[12] |
WEINER S, ADDADI L. Crystallization pathways in biomineralization. Annual Review of Materials Research, 2011, 41: 21-40.
DOI URL |
[13] |
REZNIKOV N, STEELE J A M, FRATZL P, et al. A materials science vision of extracellular matrix mineralization. Nature Reviews Materials, 2016, 1(8): 16041.
DOI URL |
[14] |
WU C T, CHANG J. Silicate bioceramics for bone tissue regeneration. Journal of Inorganic Materials, 2013, 28(1): 29-39.
DOI URL |
[15] | LIN K L, CHANG J, WANG Z. Fabrication and the characterisation of the bioactivity and degradability of macroporous calcium silicate bioceramics in vitro. Journal of Inorganic Materials, 2005, 20(3): 692-698. |
[16] |
LIU X Y, DING C X, WANG Z Y. Apatite formed on the surface of plasma-sprayed wollastonite coating immersed in simulated body fluid. Biomaterials, 2001, 22(14): 2007-2012.
DOI URL |
[17] |
WANG X, ZHOU Y, XIA L, et al. Fabrication of nano-structured calcium silicate coatings with enhanced stability, bioactivity and osteogenic and angiogenic activity. Colloids Surf. Biointerfaces, 2015, 126: 358-366.
DOI URL |
[18] |
WANG S G, XU Y C, ZHOU J, et al. In vitro degradation and surface bioactivity of iron-matrix composites containing silicate- based bioceramic. Bioactive Materials, 2017, 2(1): 10-18.
DOI URL |
[19] |
KOKUBO T, TAKADAMA H. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006, 27(15): 2907-2915.
DOI URL |
[20] | LI H T, ZHANG B P, WEN J B, et al. Influences of sintering temperature on structure and properties of Cu-doped lead-free LNKN ceramics. Journal of Functional Materials, 2011, 42(S5): 931-934. |
[21] |
ZHANG S, YU F, GREEN D J. Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 2011, 94(10): 3153-3170.
DOI URL |
[22] |
TANG Y, WU C, WU Z, et al. Fabrication and in vitro biological properties of piezoelectric bioceramics for bone regeneration. Scientific Reports, 2017, 7: 43360.
DOI URL |
[23] | KIM D, HAN S A, KIM J H, et al. Biomolecular piezoelectric materials: from amino acids to living tissues. Advanced Materials, 2020, 32(14): 1906989. |
[24] | BAXTER F R, TURNER I G, BOWEN C R, et al. The structure and properties of electroceramics for bone graft substitution. Key Engineering Materials, 2008, 361(22): 99-102. |
[25] |
MAEDA H, TSUDA K, FUKADA E. Dependence on temperature and hydration of piezoelectric, dielectric and elastic-constants of bone. Japanese Journal of Applied Physics, 1976, 15(12): 2333-2336.
DOI URL |
[26] |
SALAHINEJAD E, BAGHJEGHAZ M J. Structure, biomineralization and biodegradation of Ca-Mg oxyfluorosilicates synthesized by inorganic salt coprecipitation. Ceramics International, 2017, 43(13): 10299-10306.
DOI URL |
[1] | WU Aijun, ZHU Min, ZHU Yufang. Copper-incorporated Calcium Silicate Nanorods Composite Hydrogels for Tumor Therapy and Skin Wound Healing [J]. Journal of Inorganic Materials, 2022, 37(11): 1203-1216. |
[2] | XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN [J]. Journal of Inorganic Materials, 2021, 36(5): 492-496. |
[3] | BAO Feng, CHANG Jiang. Calcium Silicate Nanowires Based Composite Electrospun Scaffolds: Preparation, Ion Release and Cytocompatibility [J]. Journal of Inorganic Materials, 2021, 36(11): 1199-1207. |
[4] | CHANG Yuchen, LIN Ziyang, XIE Xin, WU Zhangfan, YAO Aihua, YE Song, LIN Jian, WANG Deping, CUI Xu. An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres [J]. Journal of Inorganic Materials, 2020, 35(12): 1398-1406. |
[5] | Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment [J]. Journal of Inorganic Materials, 2019, 34(4): 417-424. |
[6] | HUANG Yong-An, LU Biao, ZOU Yi-Xuan, LI Dan-Dan, YAO Ying-Bang, TAO Tao, LIANG Bo, LU Sheng-Guo. Grain Size Effect on Dielectric, Piezoelectric and Ferroelectric Property of BaTiO3 Ceramics with Fine Grains [J]. Journal of Inorganic Materials, 2018, 33(7): 767-772. |
[7] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[8] | WANG Ming-Hui, ZHONG Hong-Bin, FAN Yu-Chi, CHEN Ting. Spark Plasma Sintering of Bioactive Ca2MgSi2O7 Ceramics [J]. Journal of Inorganic Materials, 2017, 32(8): 825-830. |
[9] | HU Zhi-Bo, YAN Yang, ZHENG Shui-Lin, SUN Qin, YIN Sheng-Nan. Preparation and Characterization of Humidity Control Material Based on Diatomite/Ground Calcium Carbonate Composite [J]. Journal of Inorganic Materials, 2016, 31(1): 81-87. |
[10] | TAN Guo-Xin, OUYANG Kong-You, ZHOU Lei, LIU Yan, ZHANG Lan, NING Cheng-Yun. Titanium Modification by Calcium Ion Chelated Polydopamine and Its Cytocompatibility [J]. Journal of Inorganic Materials, 2015, 30(10): 1075-1080. |
[11] | KOU Si-Wang, YU Shu-Hui, SUN Rong, YANG Hai-Peng. Preparation and Dielectric Properties of the Three-phase Composites of Graphite Oxide/Barium Titanate/Epoxy Resin [J]. Journal of Inorganic Materials, 2014, 29(1): 71-76. |
[12] | YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair [J]. Journal of Inorganic Materials, 2013, 28(8): 795-803. |
[13] | ZHENG Xue-Bin, XIE You-Tao. Progress on Biomedical Ceramic Coatings Prepared by Thermal Spraying [J]. Journal of Inorganic Materials, 2013, 28(1): 12-20. |
[14] | XU Bin, ZHAO Chao-Yong, CAI Bing, FAN Hong-Song. Porous Titanium Treated by Nitric Acid with Varied Concentration and the Bioactivity in Vitro [J]. Journal of Inorganic Materials, 2012, 27(5): 555-560. |
[15] | LI Jin-Bo, LIU Xuan-Yong, LI Wei-Feng, ZHU Jian-Hao. Preparation and Characterization of Bioactive Poly (Lactic Acid)/SiO2-CaO Composite Membranes [J]. Journal of Inorganic Materials, 2011, 26(9): 998-1002. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||