[1] |
范鹏元. 大电致应变钛酸铋钠基无铅陶瓷的制备及性能研究. 武汉: 华中科技大学博士学位论文, 2018.
|
[2] |
HAUN M J, FURMAN E. Modeling of the electrostrictive, dielectric, and piezoelectric properties of ceramic PbTiO3. IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control, 1989, 36(4): 393-401.
|
[3] |
RÖDEL J, JO W, SEIFERT K T P, et al. Perspective on the development of lead-free piezoceramics. Journal of the American Ceramic Society, 2009, 92(6): 1153-1177.
DOI
URL
|
[4] |
JAFFE B. Antiferroelectric ceramics with field-enforced transitions: a new nonlinear circuit element. Proceedings of the IRE, 1961, 49(8): 1264-1267.
DOI
URL
|
[5] |
WU L, ZHANG J L, WANG C L, et al. Influence of compositional ratio K/Na on physical properties in (KxNa1-x)NbO3ceramics. Journal of Applied Physics, 2008, 103(8): 84.
|
[6] |
LV XIANG, WU JIAGANG, XIAO DINGQUAN, et al. Modifying temperature stability of (K,Na)NbO3 ceramics through phase boundary. Advanced Electronic Materials, 2018, 4(9): 1800205.
DOI
URL
|
[7] |
CHAO C, ZHAO X, WANG Y, et al. Giant strain and electric- field-induced phase transition in lead-free (Na0.5Bi0.5)TiO3-BaTiO3- (K0.5Na0.5)NbO3 single crystal. Applied Physics Letters, 2016, 108(2): 022903.
DOI
URL
|
[8] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.
DOI
URL
|
[9] |
黄宇. 钛酸铋钠基无铅陶瓷的储能性能研究. 武汉: 武汉理工大学硕士学位论文, 2019.
|
[10] |
ACOSTA M, NOVAK N, ROJAS V, et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Applied Physics Reviews, 2017, 4(4): 041305.
DOI
URL
|
[11] |
ZHAO CHUNLIN, WU BO, THONG HAOCHENG, et al. Improved temperature stability and high piezoelectricity in lead-free barium titanate-based ceramics. Journal of the European Ceramic Society, 2018, 38(16): 5411-5419.
DOI
URL
|
[12] |
TAN Y, ZHANG J, WANG C, et al. Enhancement of electric field-induced strain in BaTiO3ceramics through grain size optimization. Physica Status Solidi, 2015, 212(2): 433-438.
|
[13] |
ZHAO Z H, LI X L, DAI Y J, et al. Texture development in Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free ceramics prepared by reactive template grain growth with different Ba and Ca sources. Ceramics International, 2016, 42(16): 18756-18763.
DOI
URL
|
[14] |
ZHANG S T, KOUNGA A B, AULBACH E, et al. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Applied Physics Letters, 2007, 91(11): 112906.
DOI
URL
|
[15] |
ZHENG T, WU J, XIAO D, et al. Recent development in lead-free perovskite piezoelectric bulk materials. Progress in Materials Science, 2018, 98(1): 552-624.
DOI
URL
|
[16] |
LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relax-ferroelectric solid solution crystals. Nature Communications, 2016, 7(1): 13807.
DOI
URL
|
[17] |
HAO J, SHEN B, ZHAI J, et al. Switching of morphotropic phase boundary and large strain response in lead-free ternary (Bi0.5Na0.5)TiO3-(K0.5Bi0.5)TiO3-(K0.5Na0.5)NbO3system. Journal of Applied Physics, 2013, 113(11): 114106.
DOI
URL
|
[18] |
CHEN J, WANG Y, ZHANG Y, et al. Giant electric field-induced strain at room temperature in LiNbO3-doped 0.94(Bi0.5Na0.5)TiO3- 0.06BaTiO3. Journal of the European Ceramic Society, 2017, 37(6): 2365-2371.
DOI
URL
|
[19] |
HIRUMA Y, IMAI Y, WATANABE Y, et al. Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3-SrTiO3ferroelectric ceramics. Applied Physics Letters, 2008, 92(26): 213.
|
[20] |
NGUYEN H, DUONG T A, ERKINOV F, et al. Large electric field-induced strain response under a low electric field in lead-free Bi1/2Na1/2TiO3-SrTiO3-BiAlO3 ternary piezoelectric ceramics. Journal of Electronic Materials, 2020, 49(11): 6677-6685.
DOI
URL
|
[21] |
TONG X Y, LI H L, ZHOU J J, et al. Giant electrostrain under low driving field in Bi1/2Na1/2TiO3-SrTiO3ceramics for actuator applications. Ceramics International, 2016, 42(14): 16153-16159.
DOI
URL
|
[22] |
HIRUMA Y, NAGATA H, TAKENAKA T. Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions. Journal of Applied Physics, 2008, 104(12): 809.
|
[23] |
ZHU Y, ZHANG Y, XIE B, et al. Large electric field-induced strain in AgNbO3-modified 0.76Bi0.5Na0.5TiO3-0.24SrTiO3lead-free piezoceramic. Ceramics International, 2018, 44(7): 7851-7857.
DOI
URL
|
[24] |
HE H, LU X, LI M, et al. Thermal and compositional driven relaxor ferroelectric behaviours of lead-free Bi0.5Na0.5TiO3-SrTiO3 ceramics. Journal of Materials Chemistry C, 2020, 8(7): 2411-2418.
DOI
URL
|
[25] |
BAI W, CHEN D, ZHENG P, et al. NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in grain oriented lead-free BNT-based piezoelectric materials. Journal of the European Ceramic Society, 2017, 37(7): 2591-2604
DOI
URL
|
[26] |
MAURYA D, ZHOU Y, WANG Y, et al. Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0.5Bi0.5TiO3-BaTiO3-Na0.5Bi0.5TiO3piezoelectric materials. Scientific Reports, 2015, 5(1): 8595.
DOI
URL
|