Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 676-682.DOI: 10.15541/jim20210426
• RESEARCH ARTICLE • Previous Articles Next Articles
GUAN Xufeng(), LI Guifang(), WEI Yunge
Received:
2021-07-07
Revised:
2021-09-29
Published:
2022-06-20
Online:
2021-11-01
Contact:
LI Guifang, assiociate professor. E-mail: gfli@mail.xidian.edu.cnAbout author:
GUAN Xufeng (1997–), male, Master candidate. E-mail: 15735151209@163.com
Supported by:
CLC Number:
GUAN Xufeng, LI Guifang, WEI Yunge. Microstructure and Thermal Quenching Characteristics of Na1-xMxCaEu(WO4)3 (M=Li, K) Red Phosphor[J]. Journal of Inorganic Materials, 2022, 37(6): 676-682.
Materials | Crystal system | Space group | a=b/nm | c/nm | V/nm3 | α=β=γ | Rwp/% | R/%p | χ2 |
---|---|---|---|---|---|---|---|---|---|
LiCaEu(WO4)3 | Tetragonal | I41/a | 0.5230570(26) | 1.1319686(43) | 0.309694(8) | 90° | 8.61 | 7.66 | 2.438 |
NaCaEu(WO4)3 | Tetragonal | I41/a | 0.5255477(32) | 1.1393990(48) | 0.314702(5) | 90° | 7.68 | 5.95 | 1.468 |
KCaEu(WO4)3 | Tetragonal | I41/a | 0.5273337(35) | 1.1479226(52) | 0.319357(6) | 90° | 7.94 | 6.17 | 1.315 |
Table 1 Structure parameters of LiCaEu(WO4)3, NaCaEu(WO4)3 and KCaEu(WO4)3
Materials | Crystal system | Space group | a=b/nm | c/nm | V/nm3 | α=β=γ | Rwp/% | R/%p | χ2 |
---|---|---|---|---|---|---|---|---|---|
LiCaEu(WO4)3 | Tetragonal | I41/a | 0.5230570(26) | 1.1319686(43) | 0.309694(8) | 90° | 8.61 | 7.66 | 2.438 |
NaCaEu(WO4)3 | Tetragonal | I41/a | 0.5255477(32) | 1.1393990(48) | 0.314702(5) | 90° | 7.68 | 5.95 | 1.468 |
KCaEu(WO4)3 | Tetragonal | I41/a | 0.5273337(35) | 1.1479226(52) | 0.319357(6) | 90° | 7.94 | 6.17 | 1.315 |
Fig. 4 Emission spectra of phosphors and intensity contrast diagram of phosphors (a) Emission spectra of Na1-xLixCaEu(WO4)3; (b) Emission spectra of Na1-xKxCaEu(WO4)3; (c) Intensity contrast diagram of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors Colorful figures are available on website
Material | CIE chromaticity coordinate | Color purity/% | |
---|---|---|---|
x | y | ||
NaCaEu(WO4)3 | 0.6580 | 0.341 | 96.07 |
Na0.7K0.3CaEu(WO4)3 | 0.661 | 0.338 | 96.83 |
LiCaEu(WO4)3 | 0.665 | 0.334 | 97.87 |
Table 2 CIE chromaticity coordinates and color purities of NaCaEu(WO4)3, Na0.7K0.3CaEu(WO4)3 and LiCaEu(WO4)3 phosphors
Material | CIE chromaticity coordinate | Color purity/% | |
---|---|---|---|
x | y | ||
NaCaEu(WO4)3 | 0.6580 | 0.341 | 96.07 |
Na0.7K0.3CaEu(WO4)3 | 0.661 | 0.338 | 96.83 |
LiCaEu(WO4)3 | 0.665 | 0.334 | 97.87 |
Fig. 7 Emission spectra of phosphors at different temperatures (λex=395 nm) (a-c), plot of ln(I0/IT-1) versus 1/(kT) (d) and schematic illustration of a configuration coordinate diagram of the thermal quenching process (e) (a) NaCaEu(WO4)3; (b) Na0.7K0.3CaEu(WO4)3; (c) LiCaEu(WO4)3
[1] | LI S, GUO N, LIANG Q M, et al. Red phosphors doped by Eu used in white LED. Chinese Journal of Inorganic Chemistry, 2017, 33(4): 543-549. |
[2] |
ZHANG W N, TONG Y, HU F F, et al. A novel single-phase Na3.6Y1.8(PO4)3: Bi3+Eu3+ phosphor for tunable and white light emission. Ceramics International, 2020, 47(1): 284-291.
DOI URL |
[3] |
LOU S S, ZHANG P C, CHEN Y, et al. Synthesis and luminescence enhancement of CaY0.6(MoO4)1.9: Eu3+ red phosphors by Sm3+ co-doping. Ceramics International, 2020, 47(7): 10174-10184.
DOI URL |
[4] | LIU R, WANG G X. Luminescent properties of a red phosphor CePO4-6LaPO4@4SiO2:Eu3+. Chinese Journal of Inorganic Chemistry, 2019, 35(9): 1659-1664. |
[5] |
DU F P, NAKAI Y, TSUBOI T J, et al. Luminescence properties and site occupations of Eu3+ ions doped in double phosphates Ca9R(PO4)7 (R=Al, Lu). Journal of Materials Chemistry, 2011, 21(12): 4669.
DOI URL |
[6] |
ZHOU W W, SONG M J, ZHANG Y, et al. Color tunable luminescence and optical temperature sensing performance in a single-phased KBaGd(WO4)3:Dy3+Eu3+ phosphor. Optical Materials, 2020, 109: 110271.
DOI URL |
[7] |
ZHOU W W, SONG M J, ZHANG Y, et al. Multicolor tunable luminescence and energy transfer mechanism in a novel single-phase KBaGd(WO4)3:Tb3+Eu3+ phosphor for NUV WLEDs. Journal of Alloys and Compounds, 2019, 803: 1063-1047.
DOI URL |
[8] |
BIN J X, LIU H K, MEI L F, et al. Multi-color luminescence evolution and efficient energy transfer of scheelite-type LiCaGd(WO4)3:Ln3+ (Ln=EuDy, Tb) phosphors. Ceramics International, 2019, 45(2): 1837-1845.
DOI URL |
[9] |
RAJENDRAN M, VAIDYANATHAN S. New red emitting phosphors NaSrLa(MO4)3: Eu3+ [M=Mo and W] for white LEDs: synthesis, structural and optical study. Journal of Alloys and Compounds, 2019, 789: 919-931.
DOI URL |
[10] |
LI L, CHANG W X, CHEN W Y, et al. Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid sate lighting: synthesis, structure and photoluminescent properties. Ceramics International, 2017, 43(2): 2720-2729.
DOI URL |
[11] |
LI G F, WEI Y G, LI Z M, et al. Synthesis and photoluminescence of Eu3+ doped CaGd2(WO4)4 novel red phosphors for white LEDs applications. Optical Materials, 2017, 66: 253-260.
DOI URL |
[12] | WANG X H, LI G F, WEI Y G, et al. Morphology-controlled synthesis and luminescence properties of red-emitting NaCaGd(W04)3: Eu3+ Phosphors Chinese Journal of Inorganic Chemistry, 2020, 36(10): 87-96. |
[13] |
SHANNON R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst., 1976, 32(5): 751-767.
DOI URL |
[14] |
SHRUTHI D L, JAGANNATHA REDDY A, ANIL KUMAR G N, et al. Judd Ofelt theoretical analysis, photoluminescence properties of Eu3+ activated LiGd(WO4)2 phosphors. Journal of Luminescence, 2020, 222: 117167.
DOI URL |
[15] | LI G F, YANG Q, WEI Y G. Synthesis and photoluminescence properties of double perovskite NaLaMgWO6:Eu3+ red phosphors. Journal of Inorganic Materials, 2017, 32(9): 42-48. |
[16] |
RAN W G, NOH H M, CHOI C B, et al. Eu3+ doped (Li, Na, K) LaMgWO6red emission phosphors: an example to rational design with theoretical and experimental investigation. Journal of Alloys and Compounds, 2019, 785: 651-659.
DOI URL |
[17] |
BAI, S J, LIU Y, TAN G Q, et al. Enhanced quantum efficiency and thermal stability in CaWO4:Eu3+ phosphor based on structural modification induced by co-doping Al3+. Journal of Luminescence, 2020, 225: 117351.
DOI URL |
[18] |
LI X, YANG C, LIU Q S, et al. Enhancement of luminescence properties of SrAl2Si2O8: Eu3+ red phosphor. Ceramics International, 2020, 46(11): 17376-17382.
DOI URL |
[19] | TANG Q F, YANG T, GUO B, et al. Synthesis and photoluminescence properties of a potential red-emitting phosphor Sr2-xNb2O7: xEu3+ for white LEDs. Optik, 2021, 235: 166650. |
[20] |
ZHANG L X, XIE Y, GENG X, et al. Double perovskite Ca2MgTeO6:Eu3+ red-emitting phosphors with high thermal stability for near UV/blue excited white LEDs. Journal of Luminescence, 2020, 225: 117365.
DOI URL |
[21] |
SHRUTHI D L, ANIL KUMAR G N, JAGANNATHA REDDY A. Solid solution of novel LixByGdEu(WO4)2 (B=Na, K) red phosphors: influence of Na/K substitution on microstructures, Judd-Ofelt and luminescence properties for WLED applications. Ceramics International, 2021, 47(11): 16342-16357.
DOI URL |
[22] |
YUAN G F, CUI R R, ZHANG J, et al. A novel composite perovskite Ba3ZnNb2O9: Eu3+ orange red-emitting phosphor: crystal structure, luminescence properties and high thermal stability. Optik, 2021, 232: 166513.
DOI URL |
[23] |
TONG Y, CHEN Y H, CHEN S Y Z, et al. Luminescent properties of Na2GdMg2(VO4)3: Eu3+ red phosphors for NUV excited pc-WLEDs. Ceramics International, 2021, 47(9): 12320-12326.
DOI URL |
[24] |
TRAN M T, NGUYEN TU, QUANG N V, et al. Excellent thermal stability and high quantum efficiency orange-red-emitting AlPO4: Eu3+ phosphors for WLED application. Journal of Alloys and Compounds, 2021, 853: 156941.
DOI URL |
[25] |
XIN S Y, WANG Y H, ZHU G, et al. Structure and temperature sensitive photoluminescence in a novel phosphate red phosphor RbZnPO4:Eu3+. Dalton Transactions, 2015, 44(36): 16099-16106.
DOI URL |
[26] |
DU J W, PAN X Y, LIU Z P, et al. Highly efficient Eu3+ -activated Ca2Gd8Si6O26 red-emitting phosphors: a bifunctional platform towards white light-emitting diode and ratiometric optical thermometer applications. Journal of Alloys and Compounds, 2021, 859: 157843.
DOI URL |
[27] |
WANG L, GUO W L, TIAN Y, et al. High luminescent brightness and thermal stability of red emitting Li3Ba2Y3(WO4)8: Eu3+ phosphor. Ceramics International, 2016, 42(12): 13648-13653.
DOI URL |
[1] | TUERHONG Munire, ZHAO Honggang, MA Yuhua, QI Xianhui, LI Yuchen, YAN Chenxiang, LI Jiawen, CHEN Ping. Construction and Photocatalytic Activity of Monoclinic Tungsten Oxide/Red Phosphorus Step-scheme Heterojunction [J]. Journal of Inorganic Materials, 2023, 38(6): 701-707. |
[2] | DENG Taoli, CHEN Hexin, HEI Lingli, LI Shuxing, XIE Rongjun. Achieving High Light Uniformity Laser-driven White Lighting Source by Introducing Secondary Phases in Phosphor Converters [J]. Journal of Inorganic Materials, 2022, 37(8): 891-896. |
[3] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[4] | LI Qi, HUANG Yi, QIAN Bin, XU Beibei, CHEN Liying, XIAO Wenge, QIU Jianrong. Photo Curing and Pressureless Sintering of Orange-emitting Glass-ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 289-296. |
[5] | FU Mingfu, YANG Wen, LI Jiabao, DENG Shukang, ZHOU Qihang, FENG Xiaobo, YANG Peizhi. Synthesis of Orthorhombic Black Phosphorus by Chemical Vapor Transport Method [J]. Journal of Inorganic Materials, 2022, 37(10): 1102-1108. |
[6] | PENG Xinglin, LI Shuxing, LIU Zehua, YAO Xiumin, XIE Rongjun, HUANG Zhengren, LIU Xuejian. Phosphor Ceramics for High-power Solid-state Lighting [J]. Journal of Inorganic Materials, 2021, 36(8): 807-819. |
[7] | DU Aochen, DU Qiyuan, LIU Xin, YANG Yimin, XIA Chenyang, ZOU Jun, LI Jiang. Ce:YAG Transparent Ceramics Enabling High Luminous Efficacy for High-power LEDs/LDs [J]. Journal of Inorganic Materials, 2021, 36(8): 883-892. |
[8] | WANG Zhaowu, JI Haipeng, WANG Feixiang, HOU Xinghui, YI Shasha, ZHOU Ying, CHEN Deliang. Valence State Control of Manganese in MgAl2O4:Mn4+ Phosphor by Varying the Al2O3 Crystal Form [J]. Journal of Inorganic Materials, 2021, 36(5): 513-520. |
[9] | LI Jing,LIU Xiaoyue,QIU Qianfeng,LI Ling,CAO Xiaoyan. Phosphorus Sorption Characteristics on Aluminum Oxides with Different Structures [J]. Journal of Inorganic Materials, 2020, 35(9): 1005-1010. |
[10] | JI Haipeng, ZHANG Zongtao, XU Jian, TANABE Setsuhisa, CHEN Deliang, XIE Rongjun. Advance in Red-emitting Mn4+-activated Oxyfluoride Phosphors [J]. Journal of Inorganic Materials, 2020, 35(8): 847-856. |
[11] | ZHU Enquan,MA Yuhua,AINIWA· Munire,SU Zhi. Adsorption-enrichment and Localized-photodegradation of Bentonite-supported Red Phosphorus Composites [J]. Journal of Inorganic Materials, 2020, 35(7): 803-808. |
[12] | LI Neng,KONG Zhouzhou,CHEN Xingzhu,YANG Yufei. Research Progress of Novel Two-dimensional Materials in Photocatalysis and Electrocatalysis [J]. Journal of Inorganic Materials, 2020, 35(7): 735-747. |
[13] | ZHENG Yun,CHEN Yilin,GAO Bifen,LIN Bizhou. Progress on Phosphorene for Photocatalytic Water Splitting [J]. Journal of Inorganic Materials, 2020, 35(6): 647-653. |
[14] | CAO Xun, CAO Cui-Cui, SUN Guang-Yao, JIN Ping-Shi. Recent Progress of Single-phase White Light-emitting Diodes Phosphors [J]. Journal of Inorganic Materials, 2019, 34(11): 1145-1155. |
[15] | SHAO Xiu-Chen, ZHOU Sheng-Ming, TANG Yan-Ru, YI Xue-Zhuan, HAO De-Ming, CHEN Jie. Luminescence Characteristics of Ce: YAG Ceramic Phosphors with Gd3+ Doping for White Light-emitting Diodes [J]. Journal of Inorganic Materials, 2018, 33(10): 1119-1123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||