Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 585-595.DOI: 10.15541/jim20210358
Special Issue: 【虚拟专辑】增材制造及3D打印(2021-2022); 2022年度中国知网高下载论文
• REVIEW • Next Articles
NAN Bo1,2(), ZANG Jiadong3, LU Wenlong3, YANG Tingwang3, ZHANG Shengwei3, ZHANG Haibo1,2()
Received:
2021-06-07
Revised:
2021-08-18
Published:
2022-06-20
Online:
2021-11-01
Contact:
ZHANG Haibo, professor. E-mail: hbzhang@hust.edu.cnAbout author:
NAN Bo (1989-), male, PhD. E-mail: bonan@hust.edu.cn
CLC Number:
NAN Bo, ZANG Jiadong, LU Wenlong, YANG Tingwang, ZHANG Shengwei, ZHANG Haibo. Recent Progress on Additive Manufacturing of Piezoelectric Ceramics[J]. Journal of Inorganic Materials, 2022, 37(6): 585-595.
Fig. 1 Connectivities of piezoelectric ceramics and schematic pictures of common AM techniques applied for preparing piezoelectric ceramics (a) 10 types of connectivitities in bi-phase composites[10]; (b) Vat photopolymerization[18]; (c) Direct ink writing[21]; (d) Inkjet printing[23]; (e) Fused deposition modelling[26]; (f) Binder jetting[29]
AM techniques | Advantages | Disadvantages | Ingredients of raw materials | Binder system | Ref. |
---|---|---|---|---|---|
Vat photo- polymerization (VP) | Low surface roughness, high printing accuracy | High cost of ceramic paste and machine, low degree of open source | Photosensitive polymer + ceramic powder/ceramic precursor | Photosensitive polymer | [ |
Direct ink writing (DIW) | Open source, multi-materials printing | Clogging of nozzles, high surface roughness | Powder + polymer solution (high viscosity)/ceramic precursor | Water/oil based | [ |
Inkjet printing (IP) | Open source, high printing accuracy | Low solids loading, easy precipitation of the particles | Powder + polymer solution (low viscosity)/ceramic precursor | Water/oil based | [ |
Fused deposition modelling (FDM) | Open source, low cost of the machine | Low relative density, low accuracy | Ceramic powder + polymer (filament) | Thermal plastic polymers | [ |
Binder jetting (BJ) | High quality, gradient materials | High cost of machine, reuse of the powder bed | Powder bed + polymer solution | Water/oil based | [ |
Table 1 Comparison of advantages and disadvantages and composition of the feedstocks among several AM techniques applied in ceramics
AM techniques | Advantages | Disadvantages | Ingredients of raw materials | Binder system | Ref. |
---|---|---|---|---|---|
Vat photo- polymerization (VP) | Low surface roughness, high printing accuracy | High cost of ceramic paste and machine, low degree of open source | Photosensitive polymer + ceramic powder/ceramic precursor | Photosensitive polymer | [ |
Direct ink writing (DIW) | Open source, multi-materials printing | Clogging of nozzles, high surface roughness | Powder + polymer solution (high viscosity)/ceramic precursor | Water/oil based | [ |
Inkjet printing (IP) | Open source, high printing accuracy | Low solids loading, easy precipitation of the particles | Powder + polymer solution (low viscosity)/ceramic precursor | Water/oil based | [ |
Fused deposition modelling (FDM) | Open source, low cost of the machine | Low relative density, low accuracy | Ceramic powder + polymer (filament) | Thermal plastic polymers | [ |
Binder jetting (BJ) | High quality, gradient materials | High cost of machine, reuse of the powder bed | Powder bed + polymer solution | Water/oil based | [ |
Fig. 3 Design of piezoelectric metamaterials for tailorable piezoelectric charge constants[44] (a-g): Node unit designs from 3-, 4-, 5- and 8-strut identical projection patterns, respectively; (h) Node unit with dissimilar projection patterns showing decoupled $\bar{d}_{31}$, $\bar{d}_{32}$; (i) Dimensionless piezoelectric anisotropy design space accommodating different 3D node unit designs with distinct d3M distributions
Fig. 4 Macrostructure, microstructure and application of piezoelectric ceramics prepared by direct ink writing (a-c) PZT in 3-3, 3-2 and 3-1 connectivity (upper and lower pictures show the surface and cross-section of the sample, respectively)[56]; (d) Linear and annular samples with a size bar of 5 mm; (e) Cross-section of LA-2 in (d)[57]; (f) Captured image of 12 LEDs driven by the capacitor charged by KNN/PDMS[59]; (g) Alizarin Red staining of BST/40% β-TCP composite, indicating the maximum mineral deposition with a good biomineralization activity[65]
Fig. 6 Macrostructures and microstructures of samples prepared by fused deposition modelling (a) 3-3 porous ladder sample[85]; (b) Wax mould[85]; (c) 1-3 pillar arrays made by lost mould process (mould in (b))[85]; (d) 2-2 linear sample[86]; (e) Left showing 2-2 annular ring and right showing 3-3 ladder structures[85]
Material | AM techniques | Connectivities | εr | tanδ | Poling conditions | d33/(pC·N-1) | kt | Ref. |
---|---|---|---|---|---|---|---|---|
BT | VP | 1-3 | 1350 | - | 30 kV·cm-1, 100 ℃ 30 min | 160 | 0.474 | [ |
BT | VP | 1-3 | 920 | 0.07 | 2 V·μm-1, 120 ℃ 30 min | 87 | 0.3 | [ |
PZT | VP | 1-3 | 1040 | 0.020 | 30-40 kV·cm-1, 70 ℃ 15 min, silicone oil | 345 | 0.53 | [ |
PZT | DIW | Concentric ring | 1081 | - | 25 kV·cm-1, room temperature 30 min | 496 | - | [ |
KNN | DIW | 3-3 | 1775 | - | 2.5 kV·mm-1, 100 ℃ 20 min, silicone oil | 280 | - | [ |
BT | DIW | Bulk | 4730 | 0.033 | 0.66 MV·m-1, 80 ℃ 15 h, silicon oil | 200 | - | [ |
BCZT | DIW | 3-3 | 1046 | 0.021 | 3 kV·mm-1, room temperature 30 min, silicon oil | (100±4) | - | [ |
Nb-PZT | IP | 2-2 | ~700 | ~0.04 | 4 kV·mm-1, 120 ℃ 40 min, silicon oil | - | 0.46 | [ |
PZT | FDM | 3-3 | 700 | - | 25 kV, 70 ℃ 15-20 min, Corona technique | (290±10) | 0.5 | [ |
PZT | FDM | 2-2 | 627 | 0.023 | 26 kV, 60 ℃ 15 min, Corona technique | (397±16) | 0.68, 0.32(kp) | [ |
Table 2 Functional properties of piezoelectric ceramics made by AM
Material | AM techniques | Connectivities | εr | tanδ | Poling conditions | d33/(pC·N-1) | kt | Ref. |
---|---|---|---|---|---|---|---|---|
BT | VP | 1-3 | 1350 | - | 30 kV·cm-1, 100 ℃ 30 min | 160 | 0.474 | [ |
BT | VP | 1-3 | 920 | 0.07 | 2 V·μm-1, 120 ℃ 30 min | 87 | 0.3 | [ |
PZT | VP | 1-3 | 1040 | 0.020 | 30-40 kV·cm-1, 70 ℃ 15 min, silicone oil | 345 | 0.53 | [ |
PZT | DIW | Concentric ring | 1081 | - | 25 kV·cm-1, room temperature 30 min | 496 | - | [ |
KNN | DIW | 3-3 | 1775 | - | 2.5 kV·mm-1, 100 ℃ 20 min, silicone oil | 280 | - | [ |
BT | DIW | Bulk | 4730 | 0.033 | 0.66 MV·m-1, 80 ℃ 15 h, silicon oil | 200 | - | [ |
BCZT | DIW | 3-3 | 1046 | 0.021 | 3 kV·mm-1, room temperature 30 min, silicon oil | (100±4) | - | [ |
Nb-PZT | IP | 2-2 | ~700 | ~0.04 | 4 kV·mm-1, 120 ℃ 40 min, silicon oil | - | 0.46 | [ |
PZT | FDM | 3-3 | 700 | - | 25 kV, 70 ℃ 15-20 min, Corona technique | (290±10) | 0.5 | [ |
PZT | FDM | 2-2 | 627 | 0.023 | 26 kV, 60 ℃ 15 min, Corona technique | (397±16) | 0.68, 0.32(kp) | [ |
[1] |
XU S, HANSEN B J, WANG Z L. Piezoelectric-nanowire-enabled power source for driving wireless microelectronics. Nature Communications, 2010, 1: 93.
DOI URL |
[2] | VAN DEN ENDE D A, VAN DE WIEL H J, GROEN W A, et al. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites. Smart Materials and Structures, 2012, 21: 015011. |
[3] | XU X H, LI H. Photoacoustic imaging in biomedicine. Physics, 2008, 37(2): 111-119. |
[4] |
CARULLO A, PARVIS M. An ultrasonic sensor for distance measurement in automotive applications. IEEE Sensors Journal, 2001, 1(2): 143.
DOI URL |
[5] |
ROUNDY S, WRIGHT P K. A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004, 13(5): 1131.
DOI URL |
[6] |
SWARTZ S L. Topics in electronic ceramics. IEEE Transactions on Electrical Insulation, 1990, 25(5): 935-987.
DOI URL |
[7] |
MATTOX J M. Additive manufacturing and its implications for military ethics. Journal of Military Ethics, 2013, 12(3): 225-234.
DOI URL |
[8] | IBN-MOHAMMED T, KOH S C L, REANEY I M, et al. Integrated hybrid life cycle assessment and supply chain environmental profile evaluations of lead-based (lead zirconate titanate) versus lead-free (potassium sodium niobate) piezoelectric ceramics. Energy & Environmental Science, 2016, 9(11): 3495-3520. |
[9] |
BELL A J, DEUBZER O. Lead-free piezoelectrics-the environmental and regulatory issues. MRS Bulletin, 2018, 43(8): 581-587.
DOI URL |
[10] |
NEWNHAM R E, SKINNER D P, CROSS L E. Connectivity and piezoelectric-pyroelectric composites. Materials Research Bulletin, 1978, 13(5): 525-536.
DOI URL |
[11] |
JANTUNEN H, HU T, UUSIMÄKI A, et al. Tape casting of ferroelectric, dielectric, piezoelectric and ferromagnetic materials. Journal of the European Ceramic Society, 2004, 24(6): 1077-1081.
DOI URL |
[12] |
PARK G T, CHOI J J, PARK C S, et al. Piezoelectric and ferroelectric properties of 1-μm-thick lead zirconate titanate film fabricated by a double-spin-coating process. Applied Physics Letters, 2004, 85(12): 2322-2324.
DOI URL |
[13] |
SAVAKUS H P, KLICKER K A, NEWNHAM R E. PZT-epoxy piezoelectric transducers: a simplified fabrication procedure. Materials Research Bulletin, 1981, 16(6): 677-680.
DOI URL |
[14] |
GARCÍA-GANCEDO L, OLHERO S M, ALVES F J, et al. Application of gel-casting to the fabrication of 1-3 piezoelectric ceramic-polymer composites for high-frequency ultrasound devices. Journal of Micromechanics and Microengineering, 2012, 22(12): 125001.
DOI URL |
[15] | LEJEUNE M, CHARTIER T, DOSSOU-YOVO C, et al. Ink-jet printing of ceramic micro-pillar arrays. Advances in Science and Technology, 2006, 45: 413-420. |
[16] | ICHIDA Y. Current status of 3D printer use among automotive suppliers: can 3D printed-parts replace cast parts. IFEAMA SPSCP, 2016, 5: 69-82. |
[17] |
NICHOLS M R. How does the automotive industry benefit from 3D metal printing? Metal Powder Report, 2019, 74(5): 257-258.
DOI URL |
[18] | LAMBERT P, CHARTRAIN N, SCHULTZ A, et al. Mask Projection Microstereolithography of Novel Biocompatible Polymers. International Solid Freeform Fabrication Symposium, 2014:974-990. |
[19] |
SONG X, CHEN Z, LEI L, et al. Piezoelectric component fabrication using projection-based stereolithography of barium titanate ceramic suspensions. Rapid Prototyping Journal, 2017, 23(1): 44-53.
DOI URL |
[20] | TILLER B, REID A, ZHU B, et al. Piezoelectric microphone via a digital light processing 3D printing process. Materials & Design, 2019, 165: 107593. |
[21] |
OVHAL M M, KUMAR N, KANG J W. 3D direct ink writing fabrication of high-performance all-solid-state micro-supercapacitors. Molecular Crystals and Liquid Crystals, 2020, 705(1): 105-111.
DOI URL |
[22] |
TRUBY R L, LEWIS J A. Printing soft matter in three dimensions. Nature, 2016, 540(7633): 371-378.
DOI URL |
[23] | CHU Y, QIAN C, CHAHAL P, et al. Printed diodes: Materials processing, fabrication, and applications. Advanced Science, 2019, 6(6): 1801653. |
[24] | HEINZL J, HERTZ C H. Ink-jet printing. Advances in Electronics and Electron Physics, 1985, 65: 91-171. |
[25] |
WANG T, DERBY B. Ink-jet printing and sintering of PZT. Journal of the American Ceramic Society, 2005, 88(8): 2053-2058.
DOI URL |
[26] |
LEE K Y, CHO J W, CHANG N Y, et al. Accuracy of three-dimensional printing for manufacturing replica teeth. The Korean Journal of Orthodontics, 2015, 45(5): 217-225.
DOI URL |
[27] | SAFARI A, CESARANO J, CLEM P G, et al. Fabrication of Advanced Functional Electroceramic Components by Layered Manufacturing (LM) Methods. Proceedings of the 13th IEEE International Symposium on Applications of Ferroelectrics, 2002. ISAF, Japan, 2002:1-6. |
[28] | CASTLES F, ISAKOV D, LUI A, et al. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites. Scientific Reports, 2016, 6: 22714. |
[29] |
PARUPELLI S, DESAI S. A comprehensive review of additive manufacturing (3D printing): processes, applications and future potential. American Journal of Applied Sciences, 2019, 16(8): 244-272.
DOI URL |
[30] | BÁRTOLO P J. Stereolithography:Materials, Processes and Applications. Boston: Springer Science & Business Media, 2011: 42. |
[31] | SWAINSON W K. Method, Medium and Apparatus for Producing Three-dimensional Figure Product. US Patent, 4041476. 1977-08-09. |
[32] | HULL C W. Apparatus for Production of Three-dimensional Objects by Stereolithography. US Patent, 45753301. 1986. |
[33] | HULL C W, SPENCE S T, ALBERT D J, et al. Methods and Apparatus for Production of Three-dimensional Objects by Stereolithography. US Patent, 5059359. 1991-10-22. |
[34] |
LI S, DUAN W, ZHAO T, et al. The fabrication of SiBCN ceramic components from preceramic polymers by digital light processing (DLP) 3D printing technology. Journal of the European Ceramic Society, 2018, 38(14): 4597-4603.
DOI URL |
[35] |
HE C, LIU X, MA C, et al. Digital light processing fabrication of mullite component derived from preceramic precursor using photosensitive hydroxysiloxane as the matrix and alumina nanoparticles as the filler. Journal of the European Ceramic Society, 2021, 41(11): 5570-5577
DOI URL |
[36] |
DUFAUD O, MARCHAL P, CORBEL S. Rheological properties of PZT suspensions for stereolithography. Journal of the European Ceramic Society, 2002, 22(13): 2081-2092.
DOI URL |
[37] |
DUFAUD O, CORBEL S. Oxygen diffusion in ceramic suspensions for stereolithography. Chemical Engineering Journal, 2003, 92(1/2/3): 55-62.
DOI URL |
[38] |
DUFAUD O, CORBEL S. Application of stereolithography to chemical engineering: ‘from macro to micro’. Chemical Engineering Research and Design, 2005, 83(2): 133-138.
DOI URL |
[39] |
KIM K, ZHU W, QU X, et al. 3D optical printing of piezoelectric nanoparticle-polymer composite materials. ACS Nano, 2014, 8(10): 9799-9806.
DOI URL |
[40] |
CHEN Z, SONG X, LEI L, et al. 3D printing of piezoelectric element for energy focusing and ultrasonic sensing. Nano Energy, 2016, 27: 78-86.
DOI URL |
[41] |
VIJATOVIĆ M M, BOBIĆ J D, STOJANOVIĆ B D. History and challenges of barium titanate: Part II. Science of Sintering, 2008, 40(3): 235-244.
DOI URL |
[42] |
CHEN W, WANG F, YAN K, et al. Micro-stereolithography of KNN-based lead-free piezoceramics. Ceramics International, 2019, 45(4): 4880-4885.
DOI URL |
[43] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004, 432(7013): 84-87.
DOI URL |
[44] |
CUI H, HENSLEIGH R, YAO D, et al. Three-dimensional printing of piezoelectric materials with designed anisotropy and directional response. Nature Materials, 2019, 18(3): 234-241.
DOI URL |
[45] |
CHEN Y, BAO X, WONG C M, et al. PZT ceramics fabricated based on stereolithography for an ultrasound transducer array application. Ceramics International, 2018, 44(18): 22725-22730.
DOI URL |
[46] | CESARANO III J, CALVERT P D. Freeforming Objects with Low-binder Slurry. US Patent, 6027326. 2000-02-22. |
[47] |
MORISSETTE S L, LEWIS J A, CESARANO J, et al. Solid freeform fabrication of aqueous alumina-poly (vinyl alcohol) gelcasting suspensions. Journal of the American Ceramic Society, 2000, 83(10): 2409-2416.
DOI URL |
[48] |
DUOSS E B, TWARDOWSKI M, LEWIS J A. Sol-Gel inks for direct-write assembly of functional oxides. Advanced Materials, 2007, 19(21): 3485-3489.
DOI URL |
[49] |
MARQUES C F, PERERA F H, MAROTE A, et al. Biphasic calcium phosphate scaffolds fabricated by direct write assembly: mechanical, anti-microbial and osteoblastic properties. Journal of the European Ceramic Society, 2017, 37(1): 359-368.
DOI URL |
[50] |
KOLESKY D B, TRUBY R L, GLADMAN A S, et al. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Advanced Materials, 2014, 26(19): 3124-3130.
DOI URL |
[51] |
KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al. Three-dimensional bioprinting of thick vascularized tissues. Proceedings of the National Academy of Sciences, 2016, 113(12): 3179-3184.
DOI URL |
[52] |
SMAY J E, CESARANO J, LEWIS J A. Colloidal inks for directed assembly of 3-D periodic structures. Langmuir, 2002, 18(14): 5429-5437.
DOI URL |
[53] | WANG R, ZHU P, YANG W, et al. Direct-writing of 3D periodic TiO2 bio-ceramic scaffolds with a Sol-Gel ink for in vitro cell growth. Materials & Design, 2018, 144: 304-309. |
[54] |
CHEN T, SUN A, CHU C, et al. Rheological behavior of titania ink and mechanical properties of titania ceramic structures by 3D direct ink writing using high solid loading titania ceramic ink. Journal of Alloys and Compounds, 2019, 783: 321-328.
DOI URL |
[55] |
TUTTLE B A, SMAY J E, CESARANO J, et al. Robocast Pb(Zr0.95Ti0.05)O3 ceramic monoliths and composites. Journal of the American Ceramic Society, 2001, 84(4): 872-874.
DOI URL |
[56] |
SMAY J E, CESARANO III J, TUTTLE B A, et al. Piezoelectric properties of 3-X periodic Pb(ZrxTi1-x)O3-polymer composites. Journal of Applied Physics, 2002, 92(10): 6119-6127.
DOI URL |
[57] |
SMAY J E, CESARANO III J, TUTTLE B A, et al. Directed colloidal assembly of linear and annular lead zirconate titanate arrays. Journal of the American Ceramic Society, 2004, 87(2): 293-295.
DOI URL |
[58] |
LI Y, LI L, LI B. Direct ink writing of three-dimensional (K, Na)NbO3- based piezoelectric ceramics. Materials, 2015, 8(4): 1729-1737.
DOI URL |
[59] | GAO M, LI L, LI W, et al. Direct writing of patterned, lead-free nanowire aligned flexible piezoelectric device. Advanced Science, 2016, 3(8): 1600120. |
[60] |
KIM H, RENTERIA-MARQUEZ A, ISLAM M D, et al. Fabrication of bulk piezoelectric and dielectric BaTiO3 ceramics using paste extrusion 3D printing technique. Journal of the American Ceramic Society, 2019, 102(6): 3685-3694.
DOI URL |
[61] | LORENZ M, MARTIN A, WEBBER K G, et al. Electromechanical properties of Robocasted barium titanate ceramics. Advanced Engineering Materials, 2020, 22(9): 2000325. |
[62] | LIU W, REN X. Large piezoelectric effect in Pb-free ceramics. Physical Review Letters, 2009, 103(25): 257602. |
[63] |
NAN B, OLHERO S, PINHO R, et al. Direct ink writing of macroporous lead-free piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3. Journal of the American Ceramic Society, 2019, 102(6): 3191-3203.
DOI URL |
[64] |
NAN B, GALINDO-ROSALES F J, FERREIRA J M F. 3D printing vertically: direct ink writing free-standing pillar arrays. Materials Today, 2020, 35: 16-24.
DOI URL |
[65] |
TARIVERDIAN T, BEHNAMGHADER A, MILAN P B, et al. 3D-printed barium strontium titanate-based piezoelectric scaffolds for bone tissue engineering. Ceramics International, 2019, 45(11): 14029-14038.
DOI URL |
[66] |
DERBY B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annual Review of Materials Research, 2010, 40: 395-414.
DOI URL |
[67] |
BLAZDELL P F, EVANS J R G, EDIRISINGHE M J, et al. The computer aided manufacture of ceramics using multilayer jet printing. Journal of Materials Science Letters, 1995, 14(22): 1562-1565.
DOI URL |
[68] |
XIANG Q F, EVANS J R G, EDIRISINGHE M J, et al. Solid freeforming of ceramics using a drop-on-demand jet printer. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1997, 211(3): 211-214.
DOI URL |
[69] |
ZHAO X, EVANS J R G, EDIRISINGHE M J, et al. Direct ink-jet printing of vertical walls. Journal of the American Ceramic Society, 2002, 85(8): 2113-2115.
DOI URL |
[70] |
TENG W D, EDIRISINGHE M J, EVANS J R G. Optimization of dispersion and viscosity of a ceramic jet printing ink. Journal of the American Ceramic Society, 1997, 80(2): 486-494.
DOI URL |
[71] |
BHATTI A R, MOTT M, EVANS J R G, et al. PZT pillars for 1-3 composites prepared by ink-jet printing. Journal of Materials Science Letters, 2001, 20(13): 1245-1248.
DOI URL |
[72] | NOGUERA R, DOSSOU-YOVO C, LEJEUNE M, et al. Fabrication of 3D fine scale PZT components by ink-jet prototyping process. Journal de Physique IV (Proceedings), 2005, 128: 87-93. |
[73] |
NOGUERA R, LEJEUNE M, CHARTIER T. 3D fine scale ceramic components formed by ink-jet prototyping process. Journal of the European Ceramic Society, 2005, 25(12): 2055-2059.
DOI URL |
[74] |
LEJEUNE M, CHARTIER T, DOSSOU-YOVO C, et al. Ink-jet printing of ceramic micro-pillar arrays. Journal of the European Ceramic Society, 2009, 29(5): 905-911.
DOI URL |
[75] |
NOSHCHENKO O, KUSCER D, MOCIOIU O C, et al. Effect of milling time and pH on the dispersibility of lead zirconate titanate in aqueous media for inkjet printing. Journal of the European Ceramic Society, 2014, 34(2): 297-305.
DOI URL |
[76] |
BAKARIČ T, MALIČ B, KUSCER D. Lead-zirconate-titanate- based thick-film structures prepared by piezoelectric inkjet printing of aqueous suspensions. Journal of the European Ceramic Society, 2016, 36(16): 4031-4037.
DOI URL |
[77] | KUSCER D, DRNOVŠEK S, LEVASSORT F. Inkjet-printing- derived lead-zirconate-titanate-based thick films for printed electronics. Materials & Design, 2020, 198: 109324. |
[78] |
WAGATA H, GALLAGE R, YOSHIMURA M, et al. Patterning of BaTiO3 by inkjet deposition using a precursor solution. Materials Science and Engineering: B, 2009, 161(1/2/3): 146-150.
DOI URL |
[79] |
SEERDEN K A, REIS N, EVANS J R, et al. Ink-jet printing of wax-based alumina suspensions. Journal of the American Ceramic Society, 2001, 84(11): 2514-2520.
DOI URL |
[80] |
VADILLO D C, TULADHAR T R, MULJI A C, et al. The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. Journal of Rheology, 2010, 54(4): 781-795.
DOI URL |
[81] |
LEWIS J A. Direct ink writing of 3D functional materials. Advanced Functional Materials, 2006, 16(17): 2193-2204.
DOI URL |
[82] |
SCHLORDT T, SCHWANKE S, KEPPNER F, et al. Robocasting of alumina hollow filament lattice structures. Journal of the European Ceramic Society, 2013, 33: 3243-3248.
DOI URL |
[83] |
MUTH J T, VOGT D M, TRUBY R L, et al. Embedded 3D printing of strain sensors within highly stretchable elastomers. Advanced Materials, 2014, 26(36): 6307-6312.
DOI URL |
[84] |
MCNULTY T F, MOHAMMADI F, BANDYOPADHYAY A, et al. Development of a binder formulation for fused deposition of ceramics. Rapid Prototyping Journal, 1998, 4(4): 144-150.
DOI URL |
[85] |
BANDYOPADHYAY A, PANDA R K, MCNULTY T F, et al. Piezoelectric ceramics and composites via rapid prototyping techniques. Rapid Prototyping Journal, 1998, 4(1): 37-49.
DOI URL |
[86] |
LOUS G M, CORNEJO I A, MCNULTY T F, et al. Fabrication of piezoelectric ceramic/polymer composite transducers using fused deposition of ceramics. Journal of the American Ceramic Society, 2000, 83(1): 124-128.
DOI URL |
[87] |
BRENNAN R E, TURCU S, HALL A, et al. Fabrication of electroceramic components by layered manufacturing (LM). Ferroelectrics, 2003, 293(1): 3-17.
DOI URL |
[88] | SAFARI A, ALLAHVERDI M, AKDOGAN E K. Solid freeform fabrication of piezoelectric sensors and actuators. Frontiers of Ferroelectricity, 2006: 177-198. |
[89] |
SAFARI A, AKDOGAN E K. Rapid prototyping of novel piezoelectric composites. Ferroelectrics, 2006, 331(1): 153-179.
DOI URL |
[90] |
KIM H, FERNANDO T, LI M, et al. Fabrication and characterization of 3D printed BaTiO3/PVDF nanocomposites. Journal of Composite Materials, 2018, 52(2): 197-206.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||