Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 629-635.DOI: 10.15541/jim20210443
Special Issue: 【结构材料】陶瓷基复合材料
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Xingang1(), YANG Qingqing1, LIN Genlian2, GAO Wei1, QIN Fulin1, LI Rongzhen1, KANG Zhuang2(), WANG Xiaofei1, JIANG Danyu1, YAN Jina2
Received:
2021-07-14
Revised:
2021-10-18
Published:
2022-06-20
Online:
2021-10-21
Contact:
KANG Zhuang, associate professor. E-mail: kangz@mail.sic.ac.cnAbout author:
WANG Xingang (1981–), male, PhD, Senior engineer. E-mail: xgwang@mail.sic.ac.cn
Supported by:
CLC Number:
WANG Xingang, YANG Qingqing, LIN Genlian, GAO Wei, QIN Fulin, LI Rongzhen, KANG Zhuang, WANG Xiaofei, JIANG Danyu, YAN Jina. High Temperature Tensile Property of Domestic 550-grade Continuous Alumina Ceramic Fiber[J]. Journal of Inorganic Materials, 2022, 37(6): 629-635.
Fig. 3 TEM images of SIC550 fiber after heat-treatment at 1300 ℃ for 1 h (a) Bright field image (inset showing the corresponding SAED pattern), and (b) high-resolution image
Fig. 4 Room temperature tensile strength (a) and strength retention rate (b) of SIC550 fiber after heat-treatment at different temperatures in contrast to that of ALF2220S fiber reported by Jiang et al.[14]
Fig. 5 High temperature tensile strength of as-received SIC550 multifilament and high temperature tensile strength of SIC550 multifilament after heat-treatment at 1300 ℃ for 15 min
Fig. 6 XRD patterns of the fracture aeras of SIC550 fibers after tensile strength test at 1250 ℃ (a) and 1300 ℃ (b), and of SIC550 fibers after heat-treatment at 1300 ℃ for 15 min (c)
Fig. 7 TEM images for the fracture areas of SIC550 fibers after tensile strength test at 1250 ℃ (a,c,e), and for SIC550 fiber after heat-treatment at 1200 ℃ for 1 h (b,d,f) Bright field images (a, b) with insets in (a or b) showing the correpongding SAD patterns; Dark field images (c, d), and high-resolution images (e, f)
Fig. 8 High temperature tensile strength (a) and strength retention rate (b) for SIC550 filaments at different temperatures, in contrast to Nextel 720 filaments and CeraFib filaments reported by Almeida et al.[4]
[1] | 郭景坤. 陶瓷材料科学的几个前沿问题. 中国科学院院刊, 1991, 3: 202-207. |
[2] | 郭景坤. 关于陶瓷材料的脆性问题. 复旦学报, 2003, 42(6): 822-827. |
[3] | 郭景坤. 纤维补强陶瓷基复合材料的进展. 材料科学与工程, 1989, 2: 7-13. |
[4] |
ALMEIDA R S M, TUSHTEV K, CLAUSS B, et al. Tensile and creep performance of a novel mullite fiber at high temperatures. Composites Part A, 2015, 76: 37-43.
DOI URL |
[5] |
ZHANG X S, WANG B, WU N, et al. Micro- nano ceramic fibers for high temperature thermal insulation. Journal of Inorganic Materials, 2021, 36(3): 245-256.
DOI URL |
[6] |
WILSON D M, VISSER L R, High performance oxide fiber for metal and ceramic composites. Composites: Part A 2001, 32: 1143-1153.
DOI URL |
[7] |
SCHOLZ H, VETTER J, HERBORN R, et al. Oxide ceramic fibers via dry spinning process—from lab to fab. International Journal of Applied Ceramic Technology, 2020, 17(4): 1636-1645.
DOI URL |
[8] |
DELEGLISE F, BERGER M H, JEULIN D, et al. Microstructural stability and room temperature mechanical properties of the Nextel 720 fibre. Journal of the European Ceramic Society, 2001, 21(5): 569-580.
DOI URL |
[9] | LONG X, WU Z, SHAO C, et al. High-temperature oxidation behavior of SiBN fibers in air. Journal of Advanced Ceramics, 2021, 10(4): 768-777. |
[10] |
WANG Y, LIU H T, CHENG H F, et al. Research progress on oxide/oxide ceramic matrix composites. Journal of Inorganic Materials, 2014, 29(7): 673-680.
DOI |
[11] |
MA X F, LIN G L, KANG Z, et al. Crystallization behavior of hybrid mullite fiber precursors. Journal of Inorganic Materials, 2017, 32(7): 739-743.
DOI URL |
[12] | 徐书恒, 刘文胜, 马运柱, 等. 烧结温度对莫来石纤维组织结构和性能的影响. 硅酸盐通报, 2018, 37(7): 2094-2100. |
[13] |
ALMEIDA R S M, BERGMULLER E L, EGGERT B G F, et al. Thermal exposure effects on the strength and microstructure of a novel mullite fiber. Journal of the American Ceramic Society, 2016, 99(5): 1709-1716.
DOI URL |
[14] |
JIANG R, LIU H T, YANG L W, et al. Mechanical properties of aluminosilicate fiber heat-treated from 800 ℃ to 1400 ℃: effects of phase transition, grain growth and defects. Materials Characterization, 2018, 138: 120-126.
DOI URL |
[15] |
REINDERS L, PFEIFER S, KRONER S, et al. Development of mullite fibers and novel zirconia-toughened mullite fibers for high temperature applications. Journal of the European Ceramic Society, 2021, 41(6): 3570-3580.
DOI URL |
[16] | T/CBMF 97-2021, 连续氧化物陶瓷纤维单丝的拉伸性能测试方法. |
[17] | EN 1007-6:2007 Advanced technical ceramics-Ceramic composites- Methods of test for reinforcement - Part 6: Determination of tensile properties of filaments at high temperature. |
[18] |
KUMAZAWA T, SUZUKI H. Improvement in sinterability and high-temperature mechanical properties by grain boundary design for high purity mullite ceramics: crystallization of grain-boundary glassy phase. Journal of the Ceramic Society of Japan, 2020, 128(10): 685-692.
DOI URL |
[19] |
WILSON D M. Statistical tensile strength of NextelTM 610 and NextelTM 720 fibres. Journal of Materials Science, 1997, 32(10): 2535-2542.
DOI URL |
[1] | LIU Wenlong, ZHAO Jin, LIU Juan, MAO Xiaojian, ZHANG Jian, WANG Shiwei. Microwave Drying of Spontaneous-Coagulation-Cast Wet Alumina Green Body [J]. Journal of Inorganic Materials, 2023, 38(4): 461-468. |
[2] | WANG Shiwei. Progress of Spontaneous Coagulation Casting of Ceramic Slurries Based on Hydrophobic Interaction [J]. Journal of Inorganic Materials, 2022, 37(8): 809-820. |
[3] | ZHOU Ganghuai, LIU Yao, SHI Yuan, LIU Shaojun. Slurry Preparation and Stereolithography for Activated Alumina Catalyst Carrier [J]. Journal of Inorganic Materials, 2022, 37(3): 297-302. |
[4] | ZENG Yong, ZHANG Zijia, SUN Lijun, YAO Haihua, CHEN Jiming. Atmosphere Debinding Heat Treatment of 3D Printed Alumina Ceramics [J]. Journal of Inorganic Materials, 2022, 37(3): 333-337. |
[5] | WEI Hailang, CAO Xueqiang, DENG Longhui, JIANG Jianing. Thermodynamic Properties and Thermal Cycling Lifetimes of LaMeAl11O19/YSZ Thermal Barrier Coatings [J]. Journal of Inorganic Materials, 2022, 37(12): 1259-1266. |
[6] | HAO Hongjian, LI Haiyan, WAN Detian, BAO Yiwang, LI Yueming. Enhanced Flexural Strength and Thermal Shock Resistance of Alumina Ceramics by Mullite/Alumina Pre-stressed Coating [J]. Journal of Inorganic Materials, 2022, 37(12): 1295-1301. |
[7] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance [J]. Journal of Inorganic Materials, 2022, 37(1): 93-100. |
[8] | PENG Fei, JIANG Yonggang, FENG Jian, CAI Huafei, FENG Junzong, LI Liangjun. Research Progress on Alumina Aerogel Composites for High-temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(7): 673-684. |
[9] | ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, WU Chunzhi, WANG Yingde. Micro-nano Ceramic Fibers for High Temperature Thermal Insulation [J]. Journal of Inorganic Materials, 2021, 36(3): 245-256. |
[10] | FENG Mingxing, WANG Bin, XU Pengyu, TU Bingtian, WANG Hao. Predicting Thermomechanical Properties of MgAl2O4 Transparent Ceramic Based on Bond Valence Models [J]. Journal of Inorganic Materials, 2021, 36(10): 1067-1073. |
[11] | HAN Hai-Bo, WANG You-He, LI Kang, LEI Jie, LIU Dan-He, YAN Zi-Feng. Acetic Acid Leaching on the Structure, Acidity and Performance of HMOR Catalyst [J]. Journal of Inorganic Materials, 2019, 34(2): 179-185. |
[12] | CHEN Wen-Bo, CHEN Lun-Jiang, LIU Chuan-Dong, CHENG Chang-Ming, TONG Hong-Hui, ZHU Hai-Long. Preparation of Spherical Alumina Powder by RF Thermal Plasma: Numerical Simulation and Experimentation [J]. Journal of Inorganic Materials, 2018, 33(5): 550-556. |
[13] | YANG Jing-Feng, WANG Qi-Hua, WANG Ting-Mei. Synthesis and Property of Alumina Aerogel [J]. Journal of Inorganic Materials, 2018, 33(3): 259-265. |
[14] | WU Nan, WAN Lynn Yuqin, WANG Ying-De, FRANK KO. Electrospun Silicon Oxycarbide Ultrafine Fibers Derived from Polycarbosilane [J]. Journal of Inorganic Materials, 2018, 33(3): 357-362. |
[15] | WANG You-He, WANG Xiao-Dong, XU Jing-Wei, SUN Hong-Man, WU Cheng-Cheng, YAN Zi-Feng, JI Sheng-Fu. Hierarchical ZSM-5 Zeolite: Preparation by Sequential Desilication-dealumination and Catalytic Performance in Methanol to Gasoline Reaction [J]. Journal of Inorganic Materials, 2018, 33(11): 1193-1200. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||