Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 636-642.DOI: 10.15541/jim20210452
Special Issue: 【结构材料】陶瓷基复合材料
• RESEARCH ARTICLE • Previous Articles Next Articles
XIA Qian(), SUN Shihao, ZHAO Yiliang, ZHANG Cuiping(), RU Hongqiang(), WANG Wei, YUE Xinyan
Received:
2021-07-15
Revised:
2021-08-19
Published:
2022-06-20
Online:
2021-09-27
Contact:
ZHANG Cuiping, lecturer. E-mail: zhangcp@smm.neu.edu.cn;About author:
XIA Qian (1995–), male, PhD candidate. E-mail: 1910177@stu.neu.edu.cn
Supported by:
CLC Number:
XIA Qian, SUN Shihao, ZHAO Yiliang, ZHANG Cuiping, RU Hongqiang, WANG Wei, YUE Xinyan. Effect of Boron Carbide Particle Size Distribution on the Microstructure and Properties of Reaction Bonded Boron Carbide Ceramic Composites by Silicon Infiltration[J]. Journal of Inorganic Materials, 2022, 37(6): 636-642.
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
Table 1 Ratio of B4C raw material powders with different particle size distributions (%, in mass)
Group | Diameter of B4C powders (D50)/μm | |||||
---|---|---|---|---|---|---|
3.5 | 14 | 28 | 45 | 70 | 120 | |
1 | 100 | 0 | 0 | 0 | 0 | 0 |
2 | 15 | 40 | 15 | 30 | 0 | 0 |
3 | 33 | 25 | 0 | 42 | 0 | 0 |
4 | 26 | 32 | 0 | 42 | 0 | 0 |
5 | 40 | 24 | 0 | 0 | 36 | 0 |
6 | 30 | 28 | 0 | 0 | 36 | 0 |
7 | 33 | 25 | 0 | 0 | 42 | 0 |
8 | 40 | 0 | 18 | 0 | 0 | 42 |
9 | 30 | 0 | 28 | 0 | 0 | 42 |
10 | 19 | 14 | 25 | 0 | 0 | 42 |
11 | 20 | 15 | 0 | 0 | 0 | 65 |
12 | 0 | 0 | 0 | 0 | 0 | 100 |
Fig. 3 XRD patterns of RBBC composites with different particle size distributions (a) XRD patterns of RBBC composites; (b) Diffraction peaks of B4C; (c) Diffraction peaks of SiC
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
Table 2 Phase composition of RBBC composites with different particle size distributions (%, in volume)
Group | Theoretical | Actual | |||
---|---|---|---|---|---|
B4C | Si | B4C+B12(C,Si,B)3 | SiC | Si | |
R1 | 54.8 | 45.2 | 57.3 | 14.2 | 28.5 |
R2 | 62.7 | 37.3 | 63.9 | 13.3 | 22.8 |
R10 | 68.7 | 31.3 | 67.8 | 5.2 | 27.0 |
R11 | 69.9 | 30.1 | 69.4 | 5.1 | 25.5 |
R12 | 54.4 | 45.6 | 53.8 | 3.5 | 42.7 |
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
Table 3 Volume densities and open porosities of RBBC composites with different particle size distributions
Group | Open porosity/% | Volume density/(g·cm-3) |
---|---|---|
R1 | 0.16 | 2.50 |
R2 | 0.16 | 2.51 |
R10 | 0.25 | 2.50 |
R11 | 0.22 | 2.51 |
R12 | 0.26 | 2.47 |
[1] |
SONG Q, ZHANG Z H, HU Z Y, et al. Microstructure and mechanical properties of super-hard B4C ceramic fabricated by spark plasma sintering with (Ti3SiC2+Si) as sintering aid. Ceramics International, 2019, 45(7): 8790-8797.
DOI URL |
[2] |
MASHHADI M, TAHERI N E, SGLAVO V M. Pressureless sintering of boron carbide. Ceramics International, 2010, 36(1): 151-159.
DOI URL |
[3] |
ZHANG X, ZHANG Z, YANG S, et al. Preparation, microstructure and toughening mechanism of superhard ultrafine grained boron carbide ceramics with outstanding fracture toughness. Journal of Alloys and Compounds, 2018, 762: 125-132.
DOI URL |
[4] |
CHEN M, YIN Z, YUAN J, et al. Microstructure and properties of a graphene platelets toughened boron carbide composite ceramic by spark plasma sintering. Ceramics International, 2018, 44(13): 15370-15377.
DOI URL |
[5] |
LEE H, SPEYER R F. Pressureless sintering of boron carbide. Journal of the American Ceramic Society, 2003, 86(9): 1468-1473.
DOI URL |
[6] |
DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress. Journal of the American Ceramic Society, 2011, 94(11): 3605-3628.
DOI URL |
[7] |
PEREVISLOV S N, SHCHERBAK P V, TOMKOVICH M V. High density boron carbide ceramics. Refractories and Industrial Ceramics, 2018, 59(1): 32-36.
DOI URL |
[8] |
MOSHTAGHIOUM B M, CUMBRERA-HERNANDEZ F L, GÓMEZ-GARCÍA D, et al. Effect of spark plasma sintering parameters on microstructure and room-temperature hardness and toughness of fine-grained boron carbide (B4C). Journal of the European Ceramic Society, 2013, 33(2): 361-369.
DOI URL |
[9] |
HAYUN S, PARIS V, DARIEL M P, et al. Static and dynamic mechanical properties of boron carbide processed by spark plasma sintering. Journal of the European Ceramic Society, 2009, 29(16): 3395-3400.
DOI URL |
[10] |
MA L N, XIE K Y, TOKSOY M F, et al. The effect of Si on the microstructure and mechanical properties of spark plasma sintered boron carbide. Materials Characterization, 2017, 134: 274-278.
DOI URL |
[11] |
WU J, BO N, FAN Z, et al. Effect of titanium diboride on the homogeneity of boron carbide ceramic by flash spark plasma sintering. Ceramics International, 2018, 44(13): 15323-15330.
DOI URL |
[12] |
ZHANG M, LI R, YUAN T, et al. Effect of low-melting-point sintering aid on densification mechanisms of boron carbide during spark plasma sintering. Scripta Materialia, 2019, 163: 34-39.
DOI URL |
[13] |
LIU Z T, DENG X G, LI J M, et al. Effects of B4C particle size on the microstructures and mechanical properties of hot-pressed B4C- TiB2composites. Ceramics International, 2018, 44(17): 21415-21420.
DOI URL |
[14] |
SWAB J J, PITTARI J J, GAMBLE W R. Uniaxial tensile strength and fracture analysis of a hot-pressed boron carbide. Journal of the European Ceramic Society, 2019, 39(6): 1965-1973.
DOI URL |
[15] |
ZHANG M, LI R, YUAN T, et al. Densification and properties of B4C-based ceramics with CrMnFeCoNi high entropy alloy as a sintering aid by spark plasma sintering. Powder Technology, 2019, 343: 58-67.
DOI URL |
[16] | 阮建明, 黄培云. 粉末冶金原理. 北京: 机械工业出版社, 2012: 158. |
[17] |
SUN M Y, BAI Y H, LI M X, et al. In situ toughened two-phase B12(C,Si,B)3-SiC ceramics fabricated via liquid silicon infiltration. Journal of the American Ceramic Society, 2019, 102(4): 2094-2103.
DOI URL |
[18] |
HAYUN S, FRAGE N, DARIEL M P. The morphology of ceramic phases in BxC-SiC-Si infiltrated composites. Journal of Solid State Chemistry, 2006, 179(9): 2875-2879.
DOI URL |
[19] | WANG T, NI C, KARANDIKAR P. Microstructure characteristics of reaction-bonded B4C/SiC composite. Characterization of Minerals Metals & Materials, 2016: 279-286 |
[20] |
WILHELM M, WERDENICH S, WRUSS W. Influence of resin content and compaction pressure on the mechanical properties of SiC-Si composites with sub-micron SiC microstructures. Journal of the European Ceramic Society, 2001, 21(7): 981-990.
DOI URL |
[21] |
BARICK P, JANA D C, THIYAGARAJAN N. Effect of particle size on the mechanical properties of reaction bonded boron carbide ceramics. Ceramics International, 2013, 39(1): 763-770.
DOI URL |
[22] |
HAYUN S, WEIZMANN A, DARIEL M P, et al. The effect of particle size distribution on the microstructure and the mechanical properties of boron carbide-based reaction-bonded composites. International Journal of Applied Ceramic Technology, 2009, 6(4): 492-500.
DOI URL |
[23] | BARSOUM M W. Fundamentals of ceramics, 1st edition. New York:Mc. Grow-Hill Book Inc, 1997:319-326. |
[24] |
CHAKRABARTI O P, GHOSH S, MUKHERJEE J. Influence of grain size, free silicon content and temperature on the strength and toughness of reaction-bonded silicon carbide. Ceramics International, 1994, 20: 283-286.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | WU Shuang, GOU Yanzi, WANG Yongshou, SONG Quzhi, ZHANG Qingyu, WANG Yingde. Effect of Heat Treatment on Composition, Microstructure and Mechanical Property of Domestic KD-SA SiC Fibers [J]. Journal of Inorganic Materials, 2023, 38(5): 569-576. |
[3] | FENG Kun, ZHU Yong, ZHANG Kaiqiang, CHEN Zhang, LIU Yu, GAO Yanfeng. Boehmite Nanosheets-coated Separator with Enhanced Performance for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1009-1015. |
[4] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[5] | HONG Du, NIU Yaran, LI Hong, ZHONG Xin, ZHENG Xuebin. Tribological Properties of Plasma Sprayed TiC-Graphite Composite Coatings [J]. Journal of Inorganic Materials, 2022, 37(6): 643-650. |
[6] | XU Puhao, ZHANG Xiangzhao, LIU Guiwu, ZHANG Mingfen, GUI Xinyi, QIAO Guanjun. Microstructure and Mechanical Properties of SiC Joint Brazed by Al-Ti Alloys as Filler Metal [J]. Journal of Inorganic Materials, 2022, 37(6): 683-690. |
[7] | HUANG Longzhi, YIN Jie, CHEN Xiao, WANG Xinguang, LIU Xuejian, HUANG Zhengren. Selective Laser Sintering of SiC Green Body with Low Binder Content [J]. Journal of Inorganic Materials, 2022, 37(3): 347-352. |
[8] | WU Xishi, ZHU Yunzhou, HUANG Qing, HUANG Zhengren. Effect of Pore Structure of Organic Resin-based Porous Carbon on Joining Properties of Cf/SiC Composites [J]. Journal of Inorganic Materials, 2022, 37(12): 1275-1280. |
[9] | SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting [J]. Journal of Inorganic Materials, 2021, 36(6): 652-658. |
[10] | HUANG Xinyou, LIU Yumin, LIU Yang, LI Xiaoying, FENG Yagang, CHEN Xiaopu, CHEN Penghui, LIU Xin, XIE Tengfei, LI Jiang. Fabrication and Characterizations of Yb:YAG Transparent Ceramics Using Alcohol-water Co-precipitation Method [J]. Journal of Inorganic Materials, 2021, 36(2): 217-224. |
[11] | ZHANG Junmin, CHEN Xiaowu, LIAO Chunjin, GUO Feiyu, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Optimizing Microstructure and Properties of SiCf/SiC Composites Prepared by Reactive Melt Infiltration [J]. Journal of Inorganic Materials, 2021, 36(10): 1103-1110. |
[12] | ZHU Danyang, QIAN Kang, CHEN Xiaopu, HU Zewang, LIU Xin, LI Xiaoying, PAN Yubai, MIHÓKOVÁ Eva, NIKL Martin, LI Jiang. Fine-grained Ce,Y:SrHfO3 Scintillation Ceramics Fabricated by Hot Isostatic Pressing [J]. Journal of Inorganic Materials, 2021, 36(10): 1118-1124. |
[13] | LI Longbin, XUE Yudong, HU Jianbao, YANG Jinshan, ZHANG Xiangyu, DONG Shaoming. Influence of SiC Nanowires on the Damage Evolution of SiCf/SiC Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1111-1117. |
[14] | CHEN Lei,WANG Kai,SU Wentao,ZHANG Wen,XU Chenguang,WANG Yujin,ZHOU Yu. Research Progress of Transition Metal Non-oxide High-entropy Ceramics [J]. Journal of Inorganic Materials, 2020, 35(7): 748-758. |
[15] | WU Xiaojun,YANG Jie,ZHENG Rui,ZHANG Zhaofu,YANG Yi. Effect of Ablation Surface Microstructure on Plasma Arc Ablation Properties of C/C Throat Insert Fabricated via CVI+HPIC Methods [J]. Journal of Inorganic Materials, 2020, 35(6): 654-660. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||