Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 669-675.DOI: 10.15541/jim20210421
Special Issue: 【能源环境】钙钛矿; 【能源环境】太阳能电池
• RESEARCH ARTICLE • Previous Articles Next Articles
JIAO Boxin(), LIU Xingchong(), QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin
Received:
2021-07-05
Revised:
2021-09-18
Published:
2022-06-20
Online:
2021-09-27
Contact:
LIU Xingchong, associate professor. E-mail: Liuxc_76@163.comAbout author:
JIAO Boxin (1999–), male, Master candidate. E-mail: jiaoboxin21@mails.ucas.ac.cn
Supported by:
CLC Number:
JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine[J]. Journal of Inorganic Materials, 2022, 37(6): 669-675.
Fig. 3 (a) XRD patterns, (b) UV-Vis spectra, (c) FT-IR spectra, and (d) local amplification of (c) for undoped and doped perovskite films without and with L-arginine doping Colorful figures are available on website
Fig. 4 (a) PL spectra, (b) TRPL spectra and fitting resuLts of perovskite films with and without L-arginine doping Colorful figures are available on website
Fig. 5 (a) PCE box/normal distribution, (b) J-V curves, (c) IPCE and integral current density curves, and (d) forward and reverse scan J-V curves of PSCs with and without L-arginine doping Colorful figures are available on website
Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 21.80 | 1.119 | 77.1 | 18.81 |
40 | 22.20 | 1.121 | 77.0 | 19.15 |
60 | 22.55 | 1.131 | 78.6 | 20.03 |
80 | 23.68 | 1.143 | 80.8 | 21.86 |
100 | 22.74 | 1.131 | 79.4 | 20.42 |
Table 1 Photoelectric parameters of PSCs doped with different concentrations of L-arginine
Concentration/ (mg·L-1) | JSC/(mA·cm-2) | VOC/V | FF/% | PCE/% |
---|---|---|---|---|
0 | 21.80 | 1.119 | 77.1 | 18.81 |
40 | 22.20 | 1.121 | 77.0 | 19.15 |
60 | 22.55 | 1.131 | 78.6 | 20.03 |
80 | 23.68 | 1.143 | 80.8 | 21.86 |
100 | 22.74 | 1.131 | 79.4 | 20.42 |
Fig. 6 SCLC curve of PSCs (a) undoped and (b) doped with L-arginine, (c) EIS impedance spectra and (d) dark J-V curves of PSCs with and without L-arginine doping PC61 BM: [6,6]-phenyl-C61-butyric acid methyl ester
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009, 131(17): 6050-6051.
DOI URL |
[2] |
JAEKI J, MINJIN K, JONGDEUK S, et al. Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells. Nature, 2021, 592(7854): 381-385.
DOI URL |
[3] |
LI Y, JI L, LIU R G, et al. A review on morphology engineering for highly efficient and stable hybrid perovskite solar cells. J. Mater. Chem. A, 2018, 6: 12842-12875.
DOI URL |
[4] |
LONG Q, FANG Y, SHAO Y, et al. Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347: 967-970
DOI URL |
[5] |
UNGER E L, KEGELMANN L, SUCHAN K, et al. Roadmap and roadblocks for the band gap tunability of metal halide perovskites. J. Mater. Chem. A, 2017, 5: 11401-11409.
DOI URL |
[6] |
SANG I S, PARK B W, DONG U L, et al. long-term chemical aging of hybrid halide perovskites. Nano letters, 2019, 19(8): 5604-5611.
DOI URL |
[7] |
HODES G, CAHEN D. Photovoltaics: perovskite cells roll forward. Nat. Photonics, 2014, 8(2): 87-88.
DOI URL |
[8] |
GUO Z, ZHAO S, LIU A, et al. Niobium incorporation into CsPbI2Br for stable and efficient all inorganic perovskite solar cells. ACS Appl. Mater. Interfaces, 2019, 11(22): 19994-20003.
DOI URL |
[9] |
AKA B, AR C, NVA B, et al. Defect states influencing hysteresis and performance of perovskite solar cells. Solar Energy, 2020, 211: 345-353.
DOI URL |
[10] |
GUO Y, XUE Y, XU L. Interfacial interactions and enhanced optoelectronic properties of GaN/perovskite heterostructures: insight from first-principles calculations. J. Mater. Sci., 2021, 56(19): 11352-11363.
DOI URL |
[11] |
YU J C, KIM D B, JUNG E D, et al. High-performance perovskite light-emitting diodes via morphological control of perovskite films. Nanoscale, 2016, 8(13): 7036-7042.
DOI URL |
[12] |
LI N, TAO S, CHEN Y, et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy, 2019, 4(5): 408-415.
DOI URL |
[13] |
DOHERTY T, WINCHESTER A J, MACPHERSON S, et al. Performance-limiting nanoscale trap clusters at grain junctions in halide perovskites. Nature, 2020, 580(7803): 360-366.
DOI URL |
[14] |
DU J, FENG L, GUO X, et al. Enhanced efficiency and stability of planar perovskite solar cells by introducing amino acid to SnO2/ perovskite interface. J. Power Sources, 2020, 455: 227974.
DOI URL |
[15] |
CAO Y, WANG N N, TIAN H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249-253.
DOI URL |
[16] |
LIU W, HU Z L, WANG L, et al. Passiviation of l-3-(4- pyridyl)-alanineon interfacial defects of perovskite solar cell. J. Inorg. Mater., 2021, 36(6): 629-637.
DOI URL |
[17] |
WANG R, XUE J, WANG K L, et al. Constructive molecular configurations for surface-defect passivation of perovskite photovoltaics. Science, 2019, 366(6472): 1509-1513.
DOI URL |
[18] |
YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2020, 142(27): 11937-11938.
DOI URL |
[19] |
LEE J W, BAE S H, HSIEH Y T, et al. A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem, 2017, 3(2): 290-302.
DOI URL |
[20] |
NIU T, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018, 30(16): 1706576.
DOI URL |
[21] |
FEI C lI B, ZHANG R, et al. Highly efficient and stable perovskite solar cells based on monolithically grained CH3NH3PbI3 Film. Adv. Energy Mater., 2017, 7(9): 1602017.
DOI URL |
[22] |
GAO Y M, JIANG W L, YANG T Y, et al. Fabrication and characterization of high stability (EDA)(FA)2[Pb3I10] layered perovskite film. J. Inorg. Mater., 2016, 31(10): 1129-1134.
DOI URL |
[23] | SI H, ZHANG Z, LIAO Q, et al. A-site management for highly crystalline perovskites. Adv. Mater., 2020, 32(4): 201904702. |
[24] |
HU J, XU X, CHEN Y, et al. Overcoming photovoltage deficit via natural amino acid passivation for efficient perovskite solar cells and modules. J. Mater. Chem. A, 2021, 9(9): 5857-5865.
DOI URL |
[25] |
BRENES R, GUO D Y, OSHEROV A, et al. Metal halide perovskite polycrystalline films exhibiting properties of single crystals. Joule, 2017, 1(1): 155-167.
DOI URL |
[26] |
NI Z Y, BAO C X, LIU Y, et al. Resolving spatial and energetic distributions of trap states in metal halide perovskite solar cells. Science, 2020, 367(6484): 1352-1358.
DOI URL |
[27] |
GUO X B, WEI Y U, LI J, et al. Improving microstructure and photoelectric performance of the perovskite material via mixed solvents. J. Inorg. Mater., 2017, 32(8): 870-876.
DOI URL |
[28] |
JIN W Y, JIHUN J, UNSOO K, et al. Efficient perovskite solar mini-modules fabricated via bar-coating using 2-methoxyethano l-based formamidinium lead tri-iodide precursor solution. Joule, 2021, 5(9): 2420-2436.
DOI URL |
[29] |
RONG Y, YUE H, RAVISHANKAR S, et al. Tunable hysteresis effect for perovskite solar cells. Energy Environ. Sci., 2017, 10(1): 2383-2391.
DOI URL |
[30] | LIU W, LIU N, JI S, et al. Perfection of perovskite grain boundary passivation by rhodium incorporation for efficient and stable solar cells. Nanomicro lett., 2020, 12(9): 207-217. |
YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358(6367): 1192-1197.
DOI URL |
|
[31] |
YI H, XIAO Y D, SIMON SCHEINER, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017, 358(6367): 1192-1197.
DOI URL |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[3] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[4] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[5] | YU Shouwu, ZHAO Zewen, ZHAO Jinjin, XIAO Shujuan, SHI Yan, GAO Cunfa, SU Xiao, HU Yuxiang, ZHAO Zhisheng, WANG Jie, WANG Lianzhou. Research Progress in Novel In-situ Integrative Photovoltaic-storage Tandem Cells [J]. Journal of Inorganic Materials, 2020, 35(6): 623-632. |
[6] | XIONG Hao, ZHANG Bo-Xin, JIA Wei, ZHANG Qing-Hong, XIE Hua-Qing. Polymer PVP Additive for Improving Stability of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2019, 34(1): 96-102. |
[7] | XU Shun-Jian, XIAO Zong-Hu, LUO Xiao-Rui, ZHONG Wei, LOU Yong-Ping, OU Hui. Cooperative Effect of Carbon Nanotubes and Dimethyl Sulfoxide on PEDOT:PSS Hole Transport Layer in Planar Perovskite Solar cells [J]. Journal of Inorganic Materials, 2018, 33(6): 641-647. |
[8] | ZHANG Min, WANG Zeng-Hua, ZHENG Xiao-Jia, ZHANG Wen-Hua. Structural Effect of TiO2 on the Performance of MAPbBr3 Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(2): 245-250. |
[9] | WANG Wei-Qi, ZHENG Hui-Feng, LU Guan-Hong, LIU Yang-Qiao, SUN Jing, GAO Lian. Recent Progress on Applications of Nano Metal Oxides in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(9): 897-907. |
[10] | LIU Chang, YUAN Shuai, ZHANG Hai-Liang, CAO Bing-Qiang, WU Li-Li, YIN Long-Wei. p-type CuI Films Grown by Iodination of Copper and Their Application As Hole Transporting Layers for Inverted Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2016, 31(4): 358-364. |
[11] | FAN Ping, GU Di, LIANG Guang-Xing, LUO Jing-Ting, ZHANG Dong-Ping, CHEN Ju-Long. Growth and Characterization of Hybrid Organolead Halide CH3NH3PbI3 Thin Films Prepared by Single Source Thermal Evaporation [J]. Journal of Inorganic Materials, 2015, 30(10): 1105-1109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||