Journal of Inorganic Materials ›› 2022, Vol. 37 ›› Issue (6): 596-602.DOI: 10.15541/jim20210437
Special Issue: 【信息功能】电介质材料
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHAO Yuyao1(), OUYANG Jun1,2()
Received:
2021-07-13
Revised:
2021-08-25
Published:
2022-06-20
Online:
2021-08-20
Contact:
OUYANG Jun, male, professor. E-mail: ouyangjun@qlu.edu.cnAbout author:
ZHAO Yuyao (1994–), male, PhD candidate. E-mail: zhaoyuyao920606@163.com
Supported by:
CLC Number:
ZHAO Yuyao, OUYANG Jun. Columnar Nanograined BaTiO3 Ferroelectric Thin Films Integrated on Si with a Sizable Dielectric Tunability[J]. Journal of Inorganic Materials, 2022, 37(6): 596-602.
Fig. 1 Phase structure analyses of BaTiO3 films (a) XRD patterns of BaTiO3 films deposited at different temperatures; (b) Magnified area near BaTiO3(002)/LaNiO3(200) peaks from (a) with inset showing XRD patterns over 20°-50° at a low scanning rate (1 (°)/min)
Fig. 2 Nanostructures of BaTiO3 films deposited at (a-c) 450 ℃ and (d-f) 500 ℃ (a-c) 450 ℃-deposited BaTiO3 film: (a) Low magnification cross-sectional TEM image; (b) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (c) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3, while the white dashed lines showing a conformally grown BaTiO3 nanograin from its interface with LaNiO3 (d-f) 500 ℃-deposited BaTiO3 film: (d) Low magnification cross-sectional TEM image; (e) Low-resolution TEM image of the interface between LaNiO3 and BaTiO3; (f) High-resolution TEM image of the interface between LaNiO3 and BaTiO3 with the yellow dashed line showing the interface of LaNiO3/BaTiO3
Fig. 3 Electrical performance of BaTiO3 films (a) Standard P-E hysteresis loops; (b) The maximum polarization (Pm) and self-polarization (PS), as well as Pm-Ps of the BaTiO3 films as functions of the applied electric field; (c) Small-field (Vp-p=1 V) dielectric constant and loss tangent as functions of the measuring frequency (εr-f and tanδ-f); (d) Leakage current density vs the applied DC electric field
Fig. 4 Dielectric tunability performance of the BaTiO3 films Dielectric constant (εr) as a function of E from (a) P-E and (b) C-V test results with loss tangent as a function of E; (c) Dielectric tunability and figure of merit as functions of E with data points were taken from (b); (d) Comparison with other leading ferroelectric films in dielectric tunability and deposition temperature
[1] |
TAGANTSEV A K, SHERMAN V O, ASTAFIEV K F, et al. Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 2003, 11(1/2): 5-66.
DOI URL |
[2] |
MIN H K, KIM T Y, SEUNG E M, et al. Microwave properties of Mn doped (Ba1-x, Srx)TiO3thin films for tunable phase shifter. Integrated FerroeLectrics, 2004, 66(1): 283-289.
DOI URL |
[3] | HARIBABU P, MAHESH P, HWANG G T, et al. High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Advanced Functional Materials, 2018, 28(42): 1803665. |
[4] |
NIU G, YIN S, SAINT-GIRONS G, et al. Epitaxy of BaTiO3 thin film on Si (001) using a SrTiO3 buffer layer for non-volatile memory application. Microelectronic Engineering, 2011, 88(7): 1232-1235.
DOI URL |
[5] |
GAO T, LIAO J J, WANG J S, et al. Highly oriented BaTiO3 film self-assembled using an interfacial strategy and its application as a flexible piezoelectric generator for wind energy harvesting. Journal of Materials Chemistry A, 2015, 3(18): 9965-9971.
DOI URL |
[6] |
ZHANG W, CHENG H B, YANG Q, et al. Crystallographic orientation dependent dielectric properties of epitaxial BaTiO3 thin films. Ceramics International, 2016, 42(3): 4400-4405.
DOI URL |
[7] | ZHAO J Y, CHEN H W, WEI M, et al. Effects of Bi2O3, Sm2O3 content on the structure, dielectric properties and dielectric tunability of BaTiO3 ceramics. Journal of Materials Science, 2019, 30(21): 19279-19288. |
[8] |
ZHU C Q, WANG X H, ZHAO Q C, et al. Effects of grain size and temperature on the energy storage and dielectric tunability of non-reducible BaTiO3-based ceramics. Journal of the European Ceramic Society, 2019, 39(4): 1142-1148.
DOI URL |
[9] |
GAO L N, ZHAO J W, YAO X. Low dielectric loss and enhanced tunability of Ba(Zr0.3Ti0.7)O3-based thin film by Sol-Gel method. Ceramics International, 2008, 34(4): 1023-1026.
DOI URL |
[10] |
ZHANG H F, GIDDEN H, SAUNDERS T G, et al. High tunability and low loss in layered perovskite dielectrics through intrinsic elimination of oxygen vacancies. Chemistry of Materials, 2020, 32(23): 10120-10129.
DOI URL |
[11] |
SREENIVAS P, PRADHAN D, PEREZ W, et al. Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT-BCT ceramic capacitors. Journal of Physics and Chemistry of Solids, 2013, 74(3): 466-475.
DOI URL |
[12] |
PENG B L, ZHANG Q, LI X, et al. High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. Journal of Alloys and Compounds, 2015, 646(15): 597-602.
DOI URL |
[13] | SANGLE A L, LEE O J, KURSUMOVIC A, et al. Very high commutation quality factor and dielectric tunability in nanocomposite SrTiO3 thin films with Tc enhanced to >300 ℃. Nanoscale, 2018, 10(7): 2460-3468. |
[14] |
HAO L X, YANG Y L, HUAN Y, et al. Achieving a high dielectric tunability in strain-engineered tetragonal K0.5Na0.5NbO3 films. npj Computational Materials, 2021, 7(1): 62.
DOI URL |
[15] |
CHEN H W, YANG C R, FU C L, et al. The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties. Applied Surface Science, 2006, 252(12): 4171-4177.
DOI URL |
[16] |
GAO Y Q, YUAN M L, SUN X, et al. In situ preparation of high quality BaTiO3 dielectric films on Si at 350-500 ℃. Journal of Materials Science: Materials in Electronics, 2016, 28(1): 337-343.
DOI URL |
[17] |
ZHAO Y Y, OUYANG J, WANG K, et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Materials, 2021, 39: 81-88.
DOI URL |
[18] |
RAYMOND M V, SMYTH D M. Defects and charge transport in perovskite ferroelectrics. Journal of Physics and Chemistry of Solids, 1996, 57(10): 1507-1511.
DOI URL |
[19] |
CHOI K J, BIEGALSKI M, LI Y L, et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science, 2004, 306(5698): 1005-1009.
DOI URL |
[20] | WANG K, ZHANG Y, WANG S X, et al. High energy performance ferroelectric (Ba,Sr)(Zr,Ti)O3 film capacitors integrated on Si at 400 ℃. ACS Applied Materials& Interface, 2021, 13: 22717-22727. |
[21] | MILTON O. Materials Science of Thin Films. Academic Press, 2002. |
[22] |
CAI Z M, WANG X H, HONG W, et al. Grain-size- dependent dielectric properties in nanograin ferroelectrics. Journal of the American Ceramic Society, 2018, 101(12): 5487-5496.
DOI URL |
[23] | CHENG J G, MENG X J, TANG J, et al. Effects of individual layer thickness on the structure and electrical properties of Sol-Gel- derived Ba0.8Sr0.2TiO3 thin films. Journal of the Ceramic Society, 2000, 83(10): 2616-2618. |
[24] |
LIU S W, WEAVER J, YUAN Z, et al. Ferroelectric (Pb,Sr)TiO3 epitaxial thin films on (001)MgO for room temperature high- frequency tunable microwave elements. Applied Physics Letters, 2005, 87(14): 142905.
DOI URL |
[25] |
WU Z, ZHOU J, CHEN W, et al. Improvement in temperature dependence and dielectric tenability properties of PbZr0.52Ti0.48O3 thin films using Ba(Mg1/3Ta2/3)O3 buffer layer. Applied Surface Science, 2016, 388: 579-583.
DOI URL |
[26] |
DONG H T, JIAN J, LI H F, et al. Improved dielectric tunability of PZT/BST multilayer thin films on Ti substrates. Journal of Alloys and Compounds, 2017, 725: 54-59.
DOI URL |
[27] |
ZHENG Z, YAO Y Y, WENG W J, et al. High dielectric tunability of (100) oriented PbxSr1-xTiO3 thin film coordinately controlled by dipole activation and phase anisotropy. Journal of Applied Physics, 2011, 110(12): 124107.
DOI URL |
[28] |
TAKEDA K, MURAISHI T, HOSHINA T, et al. Dielectric tunability and electro-optic effect of Ba0.5Sr0.5TiO3 thin films. Journal of Applied Physics, 2010, 107(7): 074105.
DOI URL |
[29] |
GAO L B, JIANG S W, LI R G. Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering. Thin Solid Films, 2016, 603: 391-394.
DOI URL |
[30] |
ZHAI J W, YAO X, ZHANG L Y, et al. Dielectric nonlinear characteristics of BaZr0.35Ti0.65O3 thin films grown by a Sol-Gel process. Applied Physics Letters, 2004, 84(16): 3136-3138.
DOI URL |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[3] | SU Nana, HAN Jingru, GUO Yinhao, WANG Chenyu, SHI Wenhua, WU Liang, HU Zhiyi, LIU Jing, LI Yu, SU Baolian. ZIF-8-derived Three-dimensional Silicon-carbon Network Composite for High-performance Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(9): 1016-1022. |
[4] | ZHANG Ye, ZENG Yuping. Progress of Porous Silicon Nitride Ceramics Prepared via Self-propagating High Temperature Synthesis [J]. Journal of Inorganic Materials, 2022, 37(8): 853-864. |
[5] | WEI Tingting, XU Huarui, ZHU Guisheng, LONG Shenfeng, ZHANG Xiuyun, ZHAO Yunyun, JIANG Xupeng, SONG Jinjie, GUO Ningjie, GONG Yipeng. Preparation and Properties of BaTiO3 Ceramics by Low Temperature Cold Sintering [J]. Journal of Inorganic Materials, 2022, 37(8): 903-910. |
[6] | OUYANG Qin, WANG Yanfei, XU Jian, LI Yinsheng, PEI Xueliang, MO Gaoming, LI Mian, LI Peng, ZHOU Xiaobing, GE Fangfang, ZHANG Chonghong, HE Liu, YANG Lei, HUANG Zhengren, CHAI Zhifang, ZHAN Wenlong, HUANG Qing. Research Progress of SiC Fiber Reinforced SiC Composites for Nuclear Application [J]. Journal of Inorganic Materials, 2022, 37(8): 821-840. |
[7] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[8] | LUO Yi, XIA Shuhai, NIU Bo, ZHANG Yayun, LONG Donghui. Preparation and High Temperature Inorganic Transformation of Flexible Silicone Aerogels [J]. Journal of Inorganic Materials, 2022, 37(12): 1281-1288. |
[9] | LI Sheng, SONG Guoqiang, ZHANG Yuanyuan, TANG Xiaodong. Preparation and Physical Property of BTO-based Multiferroic Ceramics [J]. Journal of Inorganic Materials, 2022, 37(1): 79-85. |
[10] | MA Lingling, CHANG Jiang. Nd-doped Calcium Silicate: Photothermal Effect, Fluorescence Performance, and Biological Properties of Its Composite Electrospun Membrane [J]. Journal of Inorganic Materials, 2021, 36(9): 974-980. |
[11] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[12] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[13] | WU Xiaowei, LI Jiayan. Texturing Technology on Multicrystalline Silicon Wafer by Metal-catalyzed Chemical Etching: a Review [J]. Journal of Inorganic Materials, 2021, 36(6): 570-578. |
[14] | CHEN Lichi, WANG Yaogong, WANG Wenjiang, MA Xiaoqin, YANG Jingyuan, ZHANG Xiaoning. Preparation of Silicon Nanowires and Porous Silicon Composite Structure by Electrocatalytic Metal Assisted Chemical Etching [J]. Journal of Inorganic Materials, 2021, 36(6): 608-614. |
[15] | LIU Yang, LU Youjun, LI Yanrui, LIN Liqun, YUAN Zhenxia, HUANG Zhenkun. HfN Formation and Phase Relationships in the Hf-Si-La-O-N System [J]. Journal of Inorganic Materials, 2021, 36(4): 443-448. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||