Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (10): 1022-1030.DOI: 10.15541/jim20210074
Special Issue: 【虚拟专辑】新型材料表征技术(2020~2021); 【信息功能】Max层状材料、MXene及其他二维材料
• REVIEW • Previous Articles Next Articles
XIA Fangfang1(), WANG Fakun1, HU Hailong2, XU Xiang1, LI Yang1, ZHAI Tianyou1()
Received:
2021-02-05
Revised:
2021-03-26
Published:
2021-10-20
Online:
2021-06-01
Contact:
ZHAI Tianyou, professor. E-mail: zhaity@hust.edu.cn
About author:
XIA Fangfang(1986-), female, engineer. E-mail: xiafangfang@hust.edu.cn
Supported by:
CLC Number:
XIA Fangfang, WANG Fakun, HU Hailong, XU Xiang, LI Yang, ZHAI Tianyou. Application of Second Harmonic Generation in Characterization of 2D Materials[J]. Journal of Inorganic Materials, 2021, 36(10): 1022-1030.
Fig. 3 Characterization of 2D layered crystals with different stacking layers by SHG (a) Side view and top view of atomic structure illustration of typical layered WS2 with 2H and 3R stacking; (b-c) Optical images of 2H and 3R phase WS2; (d-e) SHG intensity of 2H and 3R phase WS2 as a function of layer numbers[40]; (f) SHG intensity of 2H and 3R phase MoS2 as a function of layer numbers[41]
Fig. 4 Characterization of stacking angle between layers by SHG (a) Schematic of SHG process in second harmonic generation of bilayer thin film; (b) Atomic structure of artificially stacked bilayer; (c-d) Optical images for stacked bilayers with different stacking angles and their corresponding SH intensities[42]
Fig. 5 Characterization of the grain boundary and crystal orientation of two-dimensional materials by SHG (a-b) Optical image and SHG image of a polycrystalline monolayer of MoS2 of the same area; (c) Polarized-SHG image showing the crystal orientations[43]; (d) Dark-field SHG imaging of a monolayer MoSe2[44]
Fig. 6 Characterization of the grain boundary by SHG and analysis of grain formation mechanism (a) Optical image and SHG mapping of the flake with boundary; Inset: illustration of the two edges growth at the boundary; (c) Illustration of the armchair directions of the two grains[24]
Fig. 7 Characterization of the strain of 2D materials by SHG (a) Schematic of strain apparatus and SHG process in monolayer MoSe2 under uniaxial tensile strain; (b) SHG spectra under different strain; (c) Evolution of normalized SHG intensity with strain[46]; (d, e) Schematic illustration of two-point bending method and SHG patterns for applied tensile strains of 0.1%, 0.5%, and 0.95%[47]
Fig. 8 Characterization of the defects of 2D materials by SHG (a-c) Optical image, fluorescence image and second harmonic mapping image of monolayer WS2[51]
Fig. 9 Characterization of 2D materials (MoS2/WS2 heterojunction) by SHG combined with photoluminescence and Raman spectroscopy (a) Atomic structure diagram; (b-c) Optical image and TEM image; (d, g) SHG intensity and mapping; (e, h) photoluminescence spectra at different positions; (f, i) Corresponding Raman spectra[52]
[1] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012, 7(11):699-712.
DOI URL |
[2] |
WANG Y, XIAO J, YANG S, et al. Second harmonic generation spectroscopy on two-dimensional materials [Invited]. Optical Materials Express, 2019, 9(3):1136-1149.
DOI URL |
[3] |
ZHAI T Y, GAN L, WANG R Y. ReX2 (X=S,Se): a new opportunity for development of two-dimensional anisotropic materials. Journal of Inorganic Materials, 2019, 34(1):1-16.
DOI URL |
[4] |
MENG J H, GAO M L, ZHANG X W. Research progress of direct growth of two-dimensional hexagonal boron nitride on dielectric substrates. Journal of Inorganic Materials, 2019, 34(12):1245-1256.
DOI URL |
[5] | CHEN W, OUYANG J, YI X, et al. Black phosphorus nanosheets as a neuroprotective nanomedicine for neurodegenerative disorder therapy. Advanced Materials, 2018, 30(3):1703458. |
[6] |
HRISTU R, EFTIMIE L G, STANCIU S G, et al. Quantitative second harmonic generation microscopy for the structural characterization of capsular collagen in thyroid neoplasms. Biomed Opt Express, 2018, 9(8):3923-3936.
DOI URL |
[7] |
DENG X, WILLIAMS E D, THOMPSON E W, et al. Second-harmonic generation from biological tissues: effect of excitation wavelength. Scanning, 2002, 24(4):175-178.
DOI URL |
[8] |
ODIN C, LE GRAND Y, RENAULT A, et al. Orientation fields of nonlinear biological fibrils by second harmonic generation microscopy. Journal of Microscopy, 2008, 229(1):32-38.
DOI URL |
[9] | LIN L, CHEN G, CHEN Z, et al. Prognostic value of tumor stromal collagen features in patients with hepatocellular carcinoma revealed by second-harmonic generation microscopy. Experimental and Molecular Pathology, 2020, 116:104513. |
[10] | SURIYA M, MANI MARAN M, BOAZ B M, et al. Crystal growth, structural, optical and piezoelectric investigations on novel B4AAT (bis-4-acetylanilinium tartrate): a phase matchable second and third-order NLO single crystal for optoelectronic and nonlinear optical device applications. Optical Materials, 2020, 108:110042. |
[11] | SIVAKUMAR T, ANBARASAN R, KALYANA SUNDAR J, et al. Enhancing the SHG effect of zinc chloride-doped DAST single crystals: new potential materials for nonlinear optical device applications. Journal of Materials Science: Materials in Electronics, 2020, 31(15):12943-12954. |
[12] | BHOWMIK G, AN Y Q, SCHUJMAN S, et al. Optical second harmonic generation from silicon (100) crystals with process tailored surface and embedded silver nanostructures for silicon nonlinear nanophotonics. Journal of Applied Physics, 2020, 128(16):165106. |
[13] | PACKIYA RAJ M, RAVI KUMAR S M, SIVAVISHNU D, et al. Synthesis, growth and optical, mechanical, electrical and surface properties of an inorganic new nonlinear optical crystal: sodium cadmium tetra chloride (SCTC). Crystal Research and Technology, 2018, 53(2):1700271. |
[14] | HONG X, HU G, ZHAO W, et al. Structuring nonlinear wavefront emitted from monolayer transition-metal dichalcogenides. Research (Wash D C), 2020, 2020:9085782. |
[15] | PANTAZIS P, MALONEY J, WU D, et al. Second harmonic generating (SHG) nanoprobes for in vivo imaging. Proceeding of National Academy of Sciences of the United States of America, 2010, 107(33):14535-14540. |
[16] |
YUAN F, SUN S, HUANG Y, et al. Improvement of second-harmonic generation induced by structural distortions in Nb doped YCa9(VO4)7 crystals. Journal of Alloys and Compounds, 2017, 726:860-865.
DOI URL |
[17] | ZHANG Z, ZHANG L, GOGNA R, et al. Large enhancement of second-harmonic generation in MoS2 by one dimensional photonic crystals. Solid State Communications, 2020, 322:114043. |
[18] | YU Y, WANG J, WEI Y M, et al. Precise characterization of self-catalyzed III-V nanowire heterostructures via optical second harmonic generation. Nanotechnology, 2017, 28(39):395701. |
[19] | HUANG W J, HOU H Y, CHEN X B, et al. Synthesis of InSe nanoflakes with near-infrared photoresponse grown by chemical vapor deposition. Chemical Research in Chinese Universities. 2020, 41(4):682-689. |
[20] | ZENG Z X S, WANG X, PAN A L. Second harmonic generation of two-dimensional layered materials: characterization, signal modulation and enhancement. Acta Physica Sinica, 2020, 69(18):184210. |
[21] | YAN C, GAN L, ZHOU X, et al. Space-confined chemical vapor deposition synthesis of ultrathin HfS2 flakes for optoelectronic application. Advanced Functional Materials, 2017(27):1702918. |
[22] |
WEN X, GONG Z, LI D. Nonlinear optics of two-dimensional transition metal dichalcogenides. InfoMat, 2019, 1(3):317-337.
DOI URL |
[23] | 李家泽, 朱宝亮, 魏光辉. 晶体光学. 北京: 北京理工大学出版社, 1989: 343-390. |
[24] | HU X, HUANG P, JIN B, et al. Halide-induced self-limited growth of ultrathin nonlayered Ge flakes for high-performance phototransistors. Journal of The American Chemical Society, 2018, 140(40):12909-12914. |
[25] | 张克从, 王希敏. 非线性光学晶体材料科学. 北京: 科学出版社, 2005: 26-77. |
[26] | SU J, WANG M, LI Y, et al. Sub-millimeter-scale monolayer p-type H-phase VS2. Advanced Functional Materials, 2020, 30(17):2000240. |
[27] | HUANG W, GAN L, LI H, et al. Phase-engineered growth of ultrathin inse flakes by chemical vapor deposition for high- efficiency second harmonic generation. Chemistry, 2018, 24(58):15678-15684. |
[28] | YANG D, HU X, ZHUANG M, et al. Inversion symmetry broken 2D 3R-MoTe2. Advanced Functional Materials, 2018, 28(26):1800785. |
[29] | WANG F, ZHANG Z, ZHANG Y, et al. Honeycomb RhI3 flakes with high environmental stability for optoelectronics. Advanced Materials, 2020, 32(25):2001979. |
[30] |
WANG R, LIANG F, WANG F, et al. Sr6Cd2Sb6O7S10: strong SHG response activated by highly polarizable Sb/O/S groups. Angewandte Chemie International Edition, 2019, 58(24):8078-8081.
DOI URL |
[31] |
LI L, HAN W, PI L, et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat, 2019, 1(1):54-73.
DOI URL |
[32] | YU Y, RAN M, ZHOU S, et al. Phase-engineered synthesis of ultrathin hexagonal and monoclinic GaTe flakes and phase transition study. Advanced Functional Materials, 2019, 29(23):1901012. |
[33] |
DAI M, CHEN H, WANG F, et al. Robust piezo-phototronic effect in multilayer gamma-InSe for high-performance self-powered flexible photodetectors. ACS Nano, 2019, 13(6):7291-7299.
DOI URL |
[34] |
FANG Y, HU X, ZHAO W, et al. Structural determination and nonlinear optical properties of new 1T‴-type MoS2 compound. Journal of the American Chemical Society, 2019, 141(2):790-793.
DOI URL |
[35] | GONG C, CHU J, YIN C, et al. Self-confined growth of ultrathin 2D nonlayered wide-bandgap semiconductor CuBr flakes. Advanced Materials, 2019, 31(36):e1903580. |
[36] | FENG X, SUN Z, PEI K, et al. 2D inorganic bimolecular crystals with strong in-plane anisotropy for second-order nonlinear optics. Advanced Materials, 2020, 32(32):e2003146. |
[37] |
LI Y, RAO Y, MAK K F, et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Letters, 2013, 13(7):3329-3333.
DOI URL |
[38] |
CHEN S Y, GOLDSTEIN T, VENKATARAMAN D, et al. Activation of new raman modes by inversion symmetry breaking in type II weyl semimetal candidate T'-MoTe2. Nano Letters, 2016, 16(9):5852-5860.
DOI URL |
[39] | SONG Y, TIAN R, YANG J, et al. Second harmonic generation in atomically thin MoTe2. Advanced Optical Materials, 2018, 6(17):1701334. |
[40] | ZENG Z, SUN X, ZHANG D, et al. Controlled vapor growth and nonlinear optical applications of large-area 3R phase WS2 and WSe2 atomic layers. Advanced Functional Materials, 2019, 29(11):1806874. |
[41] | ZHAO M, YE Z, SUZUKI R, et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light: Science & Applications, 2016, 5(8):e16131. |
[42] |
HSU W T, ZHAO Z A, LI L J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers. ACS Nano, 2014, 8(3):2951-2958.
DOI URL |
[43] |
YIN X, YE Z, CHENE D A, et al. Edge nonlinear optics on a MoS2 atomic monolayer. Science, 2014, 344(6183):488-490.
DOI URL |
[44] |
CARVALHO B R, WANG Y, FUJISAWA K, et al. Nonlinear dark-field imaging of one-dimensional defects in monolayer dichalcogenides. Nano Letters, 2020, 20(1):284-291.
DOI URL |
[45] |
CHENG J, JIANG T, JI Q, et al. Kinetic nature of grain boundary formation in as-grown MoS2 monolayers. Advanced Materials, 2015, 27(27):4069-4074.
DOI URL |
[46] |
LIANG J, ZHANG J, LI Z, et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Letters, 2017, 17(12):7539-7543.
DOI URL |
[47] |
MENNEL L, FURCHI M M, WACHTER S, et al. Optical imaging of strain in two-dimensional crystals. Nature Communications, 2018, 9(1):516.
DOI URL |
[48] |
LYUBCHANSKII I L, DADOENKOVA N N, LYUBCHANSKII M I, et al. Second-harmonic generation from realistic film-substrate interfaces: the effects of strain. Applied Physics Letters, 2000, 76(14):1848-1850.
DOI URL |
[49] | CUNHA R, CADORE A, RAMOS S,, et al. Second harmonic generation in defective hexagonal boron nitride. Journal of Physics: Condensed Matter, 2020, 32(19): 19LT01. |
[50] | MURRAY W, LUCKING M, KAHN E, et al. Second harmonic generation in two-dimensional transition metal dichalcogenides with growth and post-synthesis defects. 2D Materials, 2020, 7(4):045020. |
[51] | ROSA H G, JUNPENG L, GOMES L C, et al. Second-harmonic spectroscopy for defects engineering monitoring in transition metal dichalcogenides. Advanced Optical Materials, 2018, 6(5):1701327. |
[52] |
WU W, ZHANG Q, ZHOU X, et al. Self-powered photovoltaic photodetector established on lateral monolayer MoS2-WS2 heterostructures. Nano Energy, 2018, 51:45-53.
DOI URL |
[53] |
JIMENEZ V O, KALAPPATTIL V, EGGERS T, et al. A magnetic sensor using a 2D van der Waals ferromagnetic material. Scientific Reports, 2020, 10(1):4789.
DOI URL |
[54] | NAFDAY D, SEN D, KAUSHAL N, et al. 2D ferromagnetism in layered inorganic-organic hybrid perovskites. Physical Review Research, 2019, 1(3):032034. |
[55] |
DENEV S A, LUMMEN T T A, BARNES E, et al. Probing ferroelectrics using optical second harmonic generation. Journal of the American Ceramic Society, 2011, 94(9):2699-2727.
DOI URL |
[56] |
XU X, CHEN S, LIU S, et al. Millimeter-scale single-crystalline semiconducting MoTe2 via solid-to-solid phase transformation. Journal of The American Chemical Society, 2019, 141(5):2128-2134.
DOI URL |
[57] | LI J, ZHOU P, ZOU Z, et al. Topological phase transition in 2D 1T′-WSTe. Physica Status Solidi (b), 2020, 257(9):2000010. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[13] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[14] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||