Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1323-1329.DOI: 10.15541/jim20210206
Special Issue: 【虚拟专辑】碳中和(2020~2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【能源环境】钙钛矿; 【能源环境】CO2绿色转换
• RESEARCH LETTER • Previous Articles Next Articles
WANG Yue1,2(), CUI Changsong1,2, WANG Shiwei1,2, ZHAN Zhongliang1,2,3()
Received:
2021-03-26
Revised:
2021-04-27
Published:
2021-12-20
Online:
2021-05-25
Contact:
ZHAN Zhongliang, professor. E-mail: zzhan@ustc.edu.cn
About author:
WANG Yue (1994-), female, PhD candidate. E-mail: wangyue@mail.sic.ac.cn
Supported by:
CLC Number:
WANG Yue, CUI Changsong, WANG Shiwei, ZHAN Zhongliang. Symmetrical La3+-doped Sr2Fe1.5Ni0.1Mo0.4O6-δ Electrode Solid Oxide Fuel Cells for Pure CO2 Electrolysis[J]. Journal of Inorganic Materials, 2021, 36(12): 1323-1329.
Electrode | Electrolyte | Performance/(A∙cm-2) | Ref. |
---|---|---|---|
La0.3Sr0.7Fe0.7Ti0.3O3 | YSZ | 0.52 (2V) | [ |
La0.6Sr0.4Fe0.9Mn0.1O3-δ-GDC | YSZ | 1.107 (2V) | [ |
La0.6Sr0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 1.03 | [ |
La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ | YSZ | 0.442 | [ |
La0.6Ca0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 0.78 | [ |
La0.75Sr0.25Cr0.5Mn0.5O3-δ | YSZ | 0.09 | [ |
La0.3Sr0.7Cr0.3Fe0.7O3-δ | YSZ | 0.32 | [ |
(PrBa)0.95(Fe0.9Mo0.1)2O5+δ | LSGM | 0.51 (1.3V) | [ |
La0.3Sr1.7Fe1.5Ni0.1Mo0.4O6-δ | LSGM | 1.17 | This work |
Electrode | Electrolyte | Performance/(A∙cm-2) | Ref. |
---|---|---|---|
La0.3Sr0.7Fe0.7Ti0.3O3 | YSZ | 0.52 (2V) | [ |
La0.6Sr0.4Fe0.9Mn0.1O3-δ-GDC | YSZ | 1.107 (2V) | [ |
La0.6Sr0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 1.03 | [ |
La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ | YSZ | 0.442 | [ |
La0.6Ca0.4Fe0.8Ni0.2O3-δ-GDC | YSZ | 0.78 | [ |
La0.75Sr0.25Cr0.5Mn0.5O3-δ | YSZ | 0.09 | [ |
La0.3Sr0.7Cr0.3Fe0.7O3-δ | YSZ | 0.32 | [ |
(PrBa)0.95(Fe0.9Mo0.1)2O5+δ | LSGM | 0.51 (1.3V) | [ |
La0.3Sr1.7Fe1.5Ni0.1Mo0.4O6-δ | LSGM | 1.17 | This work |
[1] |
ALBO J, ALVAREZ-GUERRA M, CASTAÑO P, et al. Towards the electrochemical conversion of carbon dioxide into methanol. Green Chemistry, 2015, 17(4): 2304-2324.
DOI URL |
[2] |
FREUND H J, ROBERTS M W. Surface chemistry of carbon dioxide. Surface Science Reports, 1996, 25(8): 225-273.
DOI URL |
[3] |
ZHENG Y, WANG J, YU B, et al. A review of high temperature co-electrolysis of H2O and CO2 to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology. Chem. Soc. Rev., 2017, 46(5): 1427-1463.
DOI URL |
[4] |
LIU S, LIU Q, LUO J L. CO2-to-CO conversion on layered perovskite with in situ exsolved Co-Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. Journal of Materials Chemistry A, 2016, 4(44): 17521-17528.
DOI URL |
[5] |
SINGH V, MUROYAMA H, MATSUI T, et al. Feasibility of alternative electrode materials for high temperature CO2 reduction on solid oxide electrolysis cell. Journal of Power Sources, 2015, 293: 642-648.
DOI URL |
[6] |
YUE X L, IRVINE J T S. Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. Journal of the Electrochemical Society, 2012, 159(8): F442-F448.
DOI URL |
[7] | LI Y, CHEN X, YANG Y, et al. Mixed-conductor Sr2Fe1.5Mo0.5O6-δ as robust fuel electrode for pure CO2 reduction in solid oxide electrolysis cell. ACS Sustainable Chemistry & Engineering, 2017, 5(12): 11403-11412. |
[8] |
LÜ H, LIN L, ZHANG X, et al. In situ investigation of reversible exsolution/dissolution of CoFe alloy nanoparticles in a Co-doped Sr2Fe1.5Mo0.5O6-δ cathode for CO2 electrolysis. Advanced Materials, 2020, 32(6): 1906193.
DOI URL |
[9] |
YUE X, IRVINE J T S. Modification of LSCM-GDC cathodes to enhance performance for high temperature CO2 electrolysis using solid oxide electrolysis cells (SOECs). Journal of Materials Chemistry A, 2017, 5(15): 7081-7090.
DOI URL |
[10] |
LU L, NI C, CASSIDY M, et al. Demonstration of high performance in a perovskite oxide supported solid oxide fuel cell based on La and Ca co-doped SrTiO3-δ. Journal of Materials Chemistry A, 2016, 4(30): 11708-11718.
DOI URL |
[11] |
QI W, GAN Y, YIN D, et al. Remarkable chemical adsorption of manganese-doped titanate for direct carbon dioxide electrolysis. Journal of Materials Chemistry A, 2014, 2(19): 6904-6915.
DOI URL |
[12] |
LIU S, LIU Q, LUO J L. Highly stable and efficient catalyst with in situ exsolved Fe-Ni alloy nanospheres socketed on an oxygen deficient perovskite for direct CO2 electrolysis. ACS Catalysis, 2016, 6(9): 6219-6228.
DOI URL |
[13] |
TIAN Y, ZHANG L, LIU Y, et al. A self-recovering robust electrode for highly efficient CO2 electrolysis in symmetrical solid oxide electrolysis cells. Journal of Materials Chemistry A, 2019, 7(11): 6395-6400.
DOI URL |
[14] | LI Y, ZHAN Z, XIA C. Highly efficient electrolysis of pure CO2 with symmetrical nanostructured perovskite electrodes. Catalysis Science & Technology, 2018, 8(4): 980-984. |
[15] |
ZHANG Y Q, LI J H, SUN Y F, et al. Highly active and redox- stable Ce-doped LaSrCrFeO based cathode catalyst for CO2 SOECs. ACS Applied Materials Interfaces, 2016, 8(10): 6457-6463.
DOI URL |
[16] | SÃNCHEZ D, ALONSO J A, GARCÍA-HERNÁNDEZ M, et al. Microscopic nature of the electron doping effects in the double perovskite Sr2-xLaxFeMoO6(0≤x≤1) series. Journal of Materials Chemistry A, 2003, 13(7): 1771-1777. |
[17] |
SUGAHARA T, OHTAKI M, SOUMA T. Thermoelectric properties of double-perovskite oxide Sr2-xMxFeMoO6 (M=Ba, La). Journal of Ceramic Society Japan, 2008, 116(1360): 1278-1282.
DOI URL |
[18] |
YANG X, CHEN J, PANTHI D, et al. Electron doping of Sr2FeMoO6-δ as high performance anode materials for solid oxide fuel cells. Journal of Materials Chemistry A, 2019, 7(2): 733-743.
DOI URL |
[19] |
AZIZI F, KAHOUL A, AZIZI A. Effect of La doping on the electrochemical activity of double perovskite oxide Sr2FeMoO6 in alkaline medium. Journal of Alloys and Compounds, 2009, 484(1/2): 555-560.
DOI URL |
[20] |
YANG X, PANTHI D, HEDAYAT N, et al. Molybdenum dioxide as an alternative catalyst for direct utilization of methane in tubular solid oxide fuel cells. Electrochemistry Communications, 2018, 86: 126-129.
DOI URL |
[21] |
SARMA D D, MAHADEVAN P, DASGUPTA T S, et al. Electronic structure of Sr2FeMoO6-δ. Physical Review Letter, 2000, 85(12): 2549-2552.
DOI URL |
[22] |
LIU Q, DONG X, XIAO G, et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 2010, 22(48): 5478-5482.
DOI URL |
[23] |
DAI N, FENG J, WANG Z, et al. Synthesis and characterization of B-site Ni-doped perovskites Sr2Fe1.5-xNixMo0.5O6-δ (x = 0, 0.05, 0.1, 0.2, 0.4) as cathodes for SOFCs. Journal of Materials Chemistry A, 2013, 1(45): 14147-14153.
DOI URL |
[24] |
LU X, YANG Y, DING Y, et al. Mo-doped Pr0.6Sr0.4Fe0.8Ni0.2O3-δ as potential electrodes for intermediate-temperature symmetrical solid oxide fuel cells. Electrochimica Acta, 2017, 227: 33-40.
DOI URL |
[25] | PENG X, TIAN Y, LIU Y, et al. An efficient symmetrical solid oxide electrolysis cell with LSFM-based electrodes for direct electrolysis of pure CO2. Journal of CO2 Utilization, 2020, 36: 18-24. |
[26] |
WANG R, DOGDIBEGOVIC E, LAU G Y, et al. Metal-supported solid oxide electrolysis cell (MS-SOEC) with significantly enhanced catalysis. Energy Technology, 2019, 7(5): 1801154-1801166.
DOI URL |
[27] |
CAO Z, WEI B, MIAO J, et al. Efficient electrolysis of CO2 in symmetrical solid oxide electrolysis cell with highly active La0.3Sr0.7Fe0.7Ti0.3O3 electrode material. Electrochemistry Communications, 2016, 69: 80-83.
DOI URL |
[28] |
TIAN Y, ZHENG H, ZHANG L, et al. Direct electrolysis of CO2 in symmetrical solid oxide electrolysis cell based on La0.6Sr0.4Fe0.8Ni0.2O3-δ electrode. Journal of The Electrochemical Society, 2018, 165(2): F17-F23.
DOI URL |
[29] | YANG Z, MA C, WANG N, et al. Electrochemical reduction of CO2 in a symmetrical solid oxide electrolysis cell with La0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ electrode. Journal of CO2 Utilization, 2019, 33: 445-451. |
[30] |
XU S, LI S, YAO W, et al. Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-δ electrode. Journal of Power Sources, 2013, 230: 115-121.
DOI URL |
[31] |
ADDO P K, MOLERO-SANCHEZ B, CHEN M, et al. CO/CO2 study of high performance La0.3Sr0.7Fe0.7Cr0.3O3-δ reversible SOFC electrodes. Fuel Cells, 2015, 15(5): 689-696.
DOI URL |
[32] |
LU C, NIU B, YI W, et al. Efficient symmetrical electrodes of PrBaFe2-xCoxO5+δ (x=0, 0.2, 0.4) for solid oxide fuel cells and solid oxide electrolysis cells. Electrochimica Acta, 2020, 358: 136916-136927.
DOI URL |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[3] | LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691-696. |
[4] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[5] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[6] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[7] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[8] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[9] | WANG Wanhai, ZHOU Jie, TANG Weihua. Passivation Strategies of Perovskite Film Defects for Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 129-139. |
[10] | JIAO Zhixiang, JIA Fanhao, WANG Yongchen, CHEN Jianguo, REN Wei, CHENG Jinrong. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning [J]. Journal of Inorganic Materials, 2022, 37(12): 1321-1328. |
[11] | XU Tingting, LI Yunyun, WANG Qian, WANG Jingkang, REN Guohao, SUN Dazhi, WU Yuntao. Centimeter-sized Cs3Cu2I5 Single Crystal: Synthesized by Low-cost Solution Method and Optical and Scintillation Properties [J]. Journal of Inorganic Materials, 2022, 37(10): 1129-1134. |
[12] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[13] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[14] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[15] | DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics [J]. Journal of Inorganic Materials, 2021, 36(3): 277-282. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||