Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1290-1296.DOI: 10.15541/jim20210175
Special Issue: 【虚拟专辑】氢能材料(2020~2021)
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHANG Wenjin1,2(), SHEN Qianqian1,2(), XUE Jinbo1,2, LI Qi3, LIU Xuguang1,2, JIA Husheng1,2
Received:
2021-03-18
Revised:
2021-04-24
Published:
2021-12-20
Online:
2021-05-25
Contact:
SHEN Qianqian, lecturer. E-mail: shenqianqian@tyut.edu.cn
About author:
ZHANG Wenjin(1996-), male, Master candidate. E-mail: zhang_wenjin1@163.com
Supported by:
CLC Number:
ZHANG Wenjin, SHEN Qianqian, XUE Jinbo, LI Qi, LIU Xuguang, JIA Husheng. Preparation and Photoelectrochemical Water Oxidation of Hematite Nanobelts Containing Highly Ordered Oxygen Vacancies[J]. Journal of Inorganic Materials, 2021, 36(12): 1290-1296.
Fig. 2 Surface SEM images of (a) Fe3O4 NFs, (b) α-Fe2O3 NBs and (c) α-Fe2O3 NFs, (d, f)cross-sectional SEM images and (e, g) EDS mapping images of (d, e) α-Fe2O3 NBs, (f, g) α-Fe2O3 NFs; (h) XRD patterns of 3 photoanodes
Fig. 3 (a) Bright field TEM image, (b) typical HRTEM image from rectangular region in (a) and (c) corresponding fast Fourier transform (FFT) pattern, (d) enlarged HRTEM image, (e) crystal plane spacing measurement of α-Fe2O3 NBs
Fig. 6 (a) LSV curves, (b) first-order derivatives of the photocurrent densities with respect to potential, (c) I-t curves at 1.23 V (vs. RHE), (d) stability test at 1.6 V (vs. RHE), (e) PEC hydrogen production diagram and (f) the hydrogen evolution rate diagram of Fe3O4 NFs, α-Fe2O3 NBs and α-Fe2O3 NFs The orange dashed line in (b) highlights the onset potential at a slope of 0.2 mA·cm-2·V-1
Fig. 7 (a) Surface photovoltage diagram, (b) electrochemical impedance spectra, (c) Mott-Schottky plots, and (d) Tafel plots of Fe3O4 NFs, α-Fe2O3 NBs and α-Fe2O3 NFs
[1] |
AKIRA FUJISHIMA, KENICHI HONDA. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38.
DOI URL |
[2] |
LI YONG, XUE JINBO, SHEN QIANQIAN, et al. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chemical Engineering Journal, 2021, 423: 130188.
DOI URL |
[3] | GAO JIAQI, XUE JINBO, JIA SHUFANG, et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H-2 evolution over black TiO2. ACS Applied Materials & Interface, 2021, 13: 18758-18771. |
[4] |
SHEN QIANQIAN, XUE JINBO, LI YONG, et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2021, 282: 119552.
DOI URL |
[5] |
KEVIN SIVULA, FLORIAN LE FORMAL, MICHAEL GRATZEL. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4: 432-449.
DOI URL |
[6] |
ZHANG ZHUJUN, HIROKI NAGASHIMA, TAKASHI TACHIKAWA. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angewandte Chemie International Edition, 2020, 59: 2-10.
DOI URL |
[7] |
LI CHENGCHENG, LUO ZHIBIN, WANG TUO, et al. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Advanced Materials, 2018, 30: 1707502.
DOI URL |
[8] |
HAO XIAOYAN, JIA LIXIA, HE CHENGYU, et al. A general strategy for the preparation of semiconductor-oxide-nanowire photoanodes. Journal of Power Sources, 2019, 438: 226952.
DOI URL |
[9] |
ZHANG XUEQING, KLAVER PETER, SANTEN VAN RUTGER, et al. Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. Journal of Physical Chemistry C, 2016, 120: 18201-18208.
DOI URL |
[10] | WANG LEI, ZHU JIE, LIU XIANHU. Oxygen-vacancy- dominated cocatalyst/hematite interface for boosting solar water splitting. ACS Applied Materials & Interfaces, 2019, 11: 22272-22277. |
[11] |
WANG LIANZHOU, WANG ZHILIANG, MAO XIN, et al. Understanding the roles of oxygen vacancies in hematite based photoelectrochemical process. Angewandte Chemie International Edition, 2019, 58: 1030-1034.
DOI URL |
[12] |
JIN MINGSHANG, ZHANG HUI, XIE ZHAOXIONG, et al. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angewandte Chemie International Edition, 2011, 50(34): 7850-7854.
DOI URL |
[13] |
ZHOU ZHONGYUAN, WU SHAOLONG, QIN LINLING, et al. Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6: 15593-15602.
DOI URL |
[14] |
ZHANG KAN, RAVISHANKAR SANDHEEP, MA MING, et al. Overcoming charge collection limitation at solid/liquid interface by a controllable crystal deficient overlayer. Advanced Energy Materials, 2017, 7: 1600923.
DOI URL |
[15] |
WANG LEI, ZHOU XUEMEI, NGUYEN TRUONG NHAT, et al. Plasmon-enhanced photoelectrochemical water splitting using Au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8(4): 618-622.
DOI URL |
[16] |
YI YUNAN, WU QIANBAO, WANG WEI, et al. In situ depositing an ultrathin CoOxHy layer on hematite in alkaline media for photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 263: 118334.
DOI URL |
[17] |
CHEN DONG, LIU ZHIFENG, ZHANG SHAOCE. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Applied Catalysis B: Environmental, 2020, 265: 118580.
DOI URL |
[18] | SHANMUGAM MANIVANNAN, SEONGHWI AN, JUWON JEONG, et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 2020, 12: 17557-17570. |
[19] |
XU BIAO, YANG HAO, ZHOU GANG, et al. Strong metal- support interaction in size-controlled monodisperse palladium- hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Science China Materials, 2014, 57: 34-41.
DOI URL |
[20] |
WANG LUYANG, LU YUAN, HAN NANNAN, et al. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation. Small, 2021, 17: 2100400.
DOI URL |
[1] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[2] | ZHANG Ya-Ping, DING Wen-Ming, ZHU Hai-Feng, HUANG Cheng-Xing, YU Lian-Qing, WANG Yong-Qiang, LI Zhe, XU Fei. Photoelectrochemical Properties of MoSe2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2019, 34(8): 797-802. |
[3] | WEI Ke-Nian, LIU Zhan, ZUO Shi-Xiang, YAN Xiang-Yu, WU Feng-Qin, LI Xia-Zhang, YAO Chao, LIU Xiao-Heng. Preparation of CeO2/Flake-like CdS Composites as High-Performance Photoanodes for Photoelectrochemical Cathodic Protection [J]. Journal of Inorganic Materials, 2019, 34(12): 1334-1340. |
[4] | WANG Song-Can, TANG Feng-Qiu, WANG Lian-Zhou. Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design [J]. Journal of Inorganic Materials, 2018, 33(2): 173-197. |
[5] | LIU Can-Jun, CHEN Shu, LI Jie. CdS/TiO2 Nanocrystalline Films: In-situ Synthesis and Photoelectrochemical Performance [J]. Journal of Inorganic Materials, 2018, 33(12): 1343-1348. |
[6] | ZHAI Chun-Yang, SUN Ming-Juan, DU Yu-Kou, ZHU Ming-Shan. Noble Metal/Semiconductor Photoactivated Electrodes for Direct Methanol Fuel Cel [J]. Journal of Inorganic Materials, 2017, 32(9): 897-903. |
[7] | GAO Xin, LIU Xiang-Xuan, ZHU Zuo-Ming, XIE Zheng, SHE Zhao-Bin. Photoelectrochemical and Photocatalytic Properties of NiFe2O4/TiO2 Nanorod Arrays [J]. Journal of Inorganic Materials, 2016, 31(9): 935-942. |
[8] | ZHANG Ya-Ping, ZHANG An-Yu, YU Lian-Qing, DONG Kai-Tuo, LI Yan, HAO Lan-Zhong. Photoelectrochemical Properties of AgX(Cl, Br)-TiO2 Heterojunction Nanocomposites [J]. Journal of Inorganic Materials, 2016, 31(3): 269-273. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||