Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1277-1282.DOI: 10.15541/jim20210120
Special Issue: 【信息功能】敏感陶瓷; 【能源环境】金属有机框架材料
• RESEARCH ARTICLE • Previous Articles Next Articles
LI Hao1,2(), TANG Zhihong1, ZHUO Shangjun2, QIAN Rong2()
Received:
2021-03-02
Revised:
2021-03-23
Published:
2021-12-20
Online:
2021-05-10
Contact:
QIAN Rong, professor. E-mail: qianrong@mail.sic.ac.cn
About author:
LI Hao (1996-), male, Master candidate. E-mail: lh960714211@163.com
Supported by:
CLC Number:
LI Hao, TANG Zhihong, ZHUO Shangjun, QIAN Rong. High Performance of Room-temperature NO2 Gas Sensor Based on ZIF8/rGO[J]. Journal of Inorganic Materials, 2021, 36(12): 1277-1282.
Fig. 5 Response-recovery curve toward various concentration of NO2 of ZIF8/rGO sensor (a), and response of ZIF8/rGO sensor to the concentration of NO2 (b)
[1] | WU J, WU Z X, DING H J, et al. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors & Actuators: B Chemical, 2020, 305: 127445. |
[2] |
YIN M L, WANG Y T, YU L M, et al. Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. Journal of Alloys and Compounds, 2020, 829: 154471.
DOI URL |
[3] |
HE L, ZHANG W Y, ZHANG X Y, et al. 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature. Colloids and Surfaces A, 2020, 603: 125142.
DOI URL |
[4] |
WANG X D, WOLFBEIS S O. Fiber-optic chemical sensors and biosensors (2008-2012). Analytical Chemistry, 2013, 85(2): 487-508.
DOI URL |
[5] |
CHANG S C, STETTER D J. Electrochemical NO2 gas sensors: model and mechanism for the electroreduction of NO2. Electroanalysis, 1990, 2(5): 359-365.
DOI URL |
[6] |
ZHOU P F, SHEN Y B, LU W, et al. Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates. Journal of Alloys and Compounds, 2020, 828: 154395.
DOI URL |
[7] |
WU Y C, JOSHI N, ZHAO S L, et al. NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 2020, 529: 147110.
DOI URL |
[8] | KIRUBA M S, ANN S J, PRAJWAL K, et al. Sputter deposited p-NiO/n-SnO2 porous thin film heterojunction based NO2 sensor with high selectivity and fast response. Sensors & Actuators: B Chemical, 2020, 310: 127830. |
[9] | ZENG W W, LIU Y Z, MEI J, et al. Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensors & Actuators: B Chemical, 2019, 301: 127010. |
[10] | ZHANG B, CHENG M, LIU G N, et al. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sensors & Actuators: B Chemical, 2018, 263: 387-399. |
[11] |
WEI W, CHEN R S, QI W Z, et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sensors, 2019, 4(10): 2809-2818.
DOI URL |
[12] | NIU F, SHAO Z W, GAO H, et al. Si-doped graphene nanosheets for NOx gas sensing. Sensors & Actuators: B Chemical, 2021, 328: 129005. |
[13] |
WU J, TAO K, GUO Y Y, et al. A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Advanced Science, 2017, 4: 1600319.
DOI URL |
[14] | LIU S, YU B, ZHANG H, et al. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors & Actuators: B Chemical, 2014, 202: 272-278. |
[15] | LI W W, GUO J H, CAI L, et al. UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sensors & Actuators: B Chemical, 2019, 290: 443-452. |
[16] | MATATAGUIA D, VIDALA A S, GRACIA I, et al. Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensors & Actuators: B Chemical, 2018, 274: 601-608. |
[17] |
JAFARI N, ZEINALI S. Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite. ACS Omega, 2020, 5: 4395-4402.
DOI URL |
[18] |
FENG S P, JIA X H, YANG J, et al. One-pot synthesis of core-shell ZIF-8@ZnO porous nanospheres with improved ethanol gas sensing. Journal of Materials Science: Materials in Electronics, 2020, 31: 22534-22545.
DOI URL |
[19] | ZHAO J J, QUAN X, CHEN S, et al. Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(34): 28685-28694. |
[20] | LI Z, ZHANG Y, ZHANG H, et al. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Applied Materials & Interfaces, 2020, 12(33): 37489-37498. |
[21] | MA D F, SU Y J, TIAN T, et al. Multichannel room-temperature gas sensors based on magnetic field-aligned 3D Fe3O4@SiO2@reduced graphene oxide spheres. ACS Applied Materials & Interfaces, 2020, 12(33): 37418-37426. |
[22] |
LI J, LU Y J, YE Q, et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 2003, 3(7): 929-922.
DOI URL |
[23] |
BARSAN N, WEIMAR U. Conduction model of metal oxide gas sensors. Journal of Electroceramics, 2001, 7: 143-167.
DOI URL |
[24] |
LIU Y S, WANG R, ZHANG T, et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. Journal of Colloid and Interface Science, 2019, 541: 249-257.
DOI URL |
[25] | ZHANG H, YU L, LI Q, et al. Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sensors & Actuators: B Chemical, 2017, 241: 109-115. |
[1] | SUN Ming, SHAO Puzhen, SUN Kai, HUANG Jianhua, ZHANG Qiang, XIU Ziyang, XIAO Haiying, WU Gaohui. First-principles Study on Interface of Reduced Graphene Oxide Reinforced Aluminum Matrix Composites [J]. Journal of Inorganic Materials, 2022, 37(6): 651-659. |
[2] | LI Wenbo, QIAN Rong, ZHUO Shangjun, JIANG Hong, SHENG Cheng, ZHU Yueqin. MoS2 with Different Morphologies: Preparation and Gas-sensing Property of NH3 [J]. Journal of Inorganic Materials, 2022, 37(10): 1135-1140. |
[3] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
[4] | LI Pengpeng, WANG Bing, WANG Yingde. Ultrafast CO Sensor Based on Flame-annealed Porous CeO2 Nanosheets for Environmental Application [J]. Journal of Inorganic Materials, 2021, 36(11): 1223-1230. |
[5] | HE Junlong, SONG Erhong, WANG Lianjun, JIANG Wan. DFT Calculation of NO Adsorption on Cr Doped Graphene [J]. Journal of Inorganic Materials, 2021, 36(10): 1047-1052. |
[6] | SHAN Wei,FU Zhengqian,ZHANG Faqiang,MA Mingsheng,LIU Zhifu,LI Yongxiang. SnS2 Nanoplates: Synthesis and NO2 Sensing Property [J]. Journal of Inorganic Materials, 2020, 35(4): 497-504. |
[7] | ZHANG Sai, ZOU Yingtong, CHEN Zhongshen, LI Bingfeng, GU Pengcheng, WEN Tao. Visible-light-driven Activation of Persulfate by RGO/g-C3N4 Composites for Degradation of BPA in Wastewater [J]. Journal of Inorganic Materials, 2020, 35(3): 329-336. |
[8] | LU Chang-Jian, ZHU Fa-Quan, Yin Ji-Guang, ZHANG Jian-Bo, YU Ya-Wei, HU Xiu-Lan. Synthesis of α-MnO2 Nanowires via Facile Hydrothermal Method and Their Application in Li-O2 Battery [J]. Journal of Inorganic Materials, 2018, 33(9): 1029-1034. |
[9] | LI Qiang, SHI Wan-Yan, ZHANG Chen, JIANG Dan-Yu. SO2 Non-equilibrium Gas Sensor Based on Na3Zr2Si2PO12 Solid Electrolyte [J]. Journal of Inorganic Materials, 2018, 33(2): 229-236. |
[10] | LIANG Ji-Ran, ZHANG Ye, YANG Ran, ZHAO Yi-Rui, GUO Jin-Bang. Room-temperature NH3 Gas Sensing Property of VO2(B)/ZnO Hierarchical Heterogeneous Composite with Nanorod Structure [J]. Journal of Inorganic Materials, 2018, 33(12): 1323-1329. |
[11] | HUANG Yi-Hua, JIANG Dong-Liang, CHEN Zhong-Ming, LIU Xue-Jian, ZHANG Xian-Feng, LIAO Zhen-Kui, HUANG Zheng-Ren. Fabrication and Property of rGO/SiC Composite [J]. Journal of Inorganic Materials, 2018, 33(11): 1147-1153. |
[12] | LI Cui-Xia, JIN Hai-Ze, YANG Zhi-Zhong, YANG Xuan, DONG Qi-Zheng, LI Ting-Ting. Preparation and Photocatalytic Properties of Mesoporous RGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2017, 32(4): 357-364. |
[13] | HOU Yuan, ZHANG Bang-Wen, XING Rui-Guang, BULIN Chao-Ke. One-step Synthesis and Electrochemical Properties of Reduced Graphene Oxide/MnO2 Composites [J]. Journal of Inorganic Materials, 2015, 30(8): 855-860. |
[14] | XIAO Xing-Zhong, YI Qing-Feng. Synthesis and Electrochemical Capacity of MnO2/SMWCNT/PANI Ternary Composites [J]. Journal of Inorganic Materials, 2013, 28(8): 825-830. |
[15] | YU Zhen-Jun, WANG Yan-Li, DENG Hong-Gui, ZHAN Liang, YANG Guang-Zhi, YANG Jun-He, LING Li-Cheng. Synthesis and Electrochemical Performance of SnO2/Graphene Anode Material for Lithium Ion Batteries [J]. Journal of Inorganic Materials, 2013, 28(5): 515-520. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||