Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (12): 1330-1336.DOI: 10.15541/jim20210063
• RESEARCH LETTER • Previous Articles Next Articles
WANG Tingting(), SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng()
Received:
2021-02-01
Revised:
2021-03-30
Published:
2021-12-20
Online:
2021-04-05
Contact:
ZHANG Heng, PhD, associate professor. E-mail: zhangheng@qfnu.edu.cn
About author:
WANG Tingting (1979-), female, Master. E-mail: wangting@qfnu.edu.cn
Supported by:
CLC Number:
WANG Tingting, SHI Shumei, LIU Chenyuan, ZHU Wancheng, ZHANG Heng. Synthesis of Hierarchical Porous Nickel Phyllosilicate Microspheres as Efficient Adsorbents for Removal of Basic Fuchsin[J]. Journal of Inorganic Materials, 2021, 36(12): 1330-1336.
Ni/Si molar ratio | SBET /(m2·g-1) | Pore volume /(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0.5 : 1 | 139.4 | 0.884 | 6.00 |
0.75 : 1 | 128.2 | 0.511 | 5.58 |
1 : 1 | 119.6 | 0.673 | 5.90 |
1.25 : 1 | 101.1 | 0.426 | 5.86 |
1.5 : 1 | 95.5 | 0.564 | 8.68 |
Ni/Si molar ratio | SBET /(m2·g-1) | Pore volume /(cm3·g-1) | Average pore diameter/nm |
---|---|---|---|
0.5 : 1 | 139.4 | 0.884 | 6.00 |
0.75 : 1 | 128.2 | 0.511 | 5.58 |
1 : 1 | 119.6 | 0.673 | 5.90 |
1.25 : 1 | 101.1 | 0.426 | 5.86 |
1.5 : 1 | 95.5 | 0.564 | 8.68 |
qe,exp /(mg·g-1) | Pseudo-first-order kinetic model | Pseudo-second-order kinetic model | ||||
---|---|---|---|---|---|---|
qe,calc1/(mg·g-1) | k1/min-1 | R2 | qe,calc2/(mg·g-1) | k2/(mg·g-1·min-1) | R2 | |
120.7 | 55.2 | 0.0483 | 0.8526 | 118.5 | 0.0051 | 0.9979 |
qe,exp /(mg·g-1) | Pseudo-first-order kinetic model | Pseudo-second-order kinetic model | ||||
---|---|---|---|---|---|---|
qe,calc1/(mg·g-1) | k1/min-1 | R2 | qe,calc2/(mg·g-1) | k2/(mg·g-1·min-1) | R2 | |
120.7 | 55.2 | 0.0483 | 0.8526 | 118.5 | 0.0051 | 0.9979 |
Adsorbents | Initial concentration of BF solution/(mg·L-1) | Adsorption equilibrium time/min | Maximum adsorption capacity /(mg·g-1) | Ref. |
---|---|---|---|---|
Alkali-activated diatomite | 15 | 30 | 4.85 | [1] |
(Acrylamide-co-sodium methacrylate )-graft-chitosan gel | 125 | 180 | 6.1 | [2] |
β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite | 100 | 150 | 6.5 | [3] |
Hydroxy-aluminum pillared bentonite | 100 | 10-15 | 6.6 | [4] |
Iron-manganese oxide coated kaolinite | 40 | 50 | 8.16 | [5] |
Copper vinylphosphonate | 30 | 150 | 19.29 | [6] |
Fe-ZSM-5 | 20 | 240 | 25.8 | [7] |
β-cyclodextrin-styrene-based polymer | 50 | 180 | 29.6 | [8] |
CoFe2O4-HA-ECH | 33.8 | 30 | 31.3 | [9] |
Magnetic chitosan/graphene oxide | 50 | 70 | 32.8 | [10] |
Activated carbon/ferrospinel composite | 100 | 60 | 49.9 | [11] |
Al-MCM-41 | 60 | 240 | 54 | [12] |
Ba(B2Si2O8) microspheres | 30 | 240 | 58.0 | [13] |
NiFe2O4/polythiophene nanocomposite | 50 | 30 | 76 | [14] |
Ni3Si2O5(OH)4 | 50 | 180 | 120.7 | This work |
Adsorbents | Initial concentration of BF solution/(mg·L-1) | Adsorption equilibrium time/min | Maximum adsorption capacity /(mg·g-1) | Ref. |
---|---|---|---|---|
Alkali-activated diatomite | 15 | 30 | 4.85 | [1] |
(Acrylamide-co-sodium methacrylate )-graft-chitosan gel | 125 | 180 | 6.1 | [2] |
β-cyclodextrin-carboxymethyl cellulose-graphene oxide composite | 100 | 150 | 6.5 | [3] |
Hydroxy-aluminum pillared bentonite | 100 | 10-15 | 6.6 | [4] |
Iron-manganese oxide coated kaolinite | 40 | 50 | 8.16 | [5] |
Copper vinylphosphonate | 30 | 150 | 19.29 | [6] |
Fe-ZSM-5 | 20 | 240 | 25.8 | [7] |
β-cyclodextrin-styrene-based polymer | 50 | 180 | 29.6 | [8] |
CoFe2O4-HA-ECH | 33.8 | 30 | 31.3 | [9] |
Magnetic chitosan/graphene oxide | 50 | 70 | 32.8 | [10] |
Activated carbon/ferrospinel composite | 100 | 60 | 49.9 | [11] |
Al-MCM-41 | 60 | 240 | 54 | [12] |
Ba(B2Si2O8) microspheres | 30 | 240 | 58.0 | [13] |
NiFe2O4/polythiophene nanocomposite | 50 | 30 | 76 | [14] |
Ni3Si2O5(OH)4 | 50 | 180 | 120.7 | This work |
Langmuir isotherm model | Freundlich isotherm model | ||||
---|---|---|---|---|---|
qm/(mg·g-1) | b/(L·mg-1) | R2 | kf | 1/n | R2 |
176.7 | 4.7474 | 0.7920 | 104.9 | 0.1678 | 0.9919 |
Langmuir isotherm model | Freundlich isotherm model | ||||
---|---|---|---|---|---|
qm/(mg·g-1) | b/(L·mg-1) | R2 | kf | 1/n | R2 |
176.7 | 4.7474 | 0.7920 | 104.9 | 0.1678 | 0.9919 |
[1] |
RICHARD-PLOUET M, VILMINOT S, GUILLOT M. Synthetic transition metal phyllosilicates and organic-inorganic related phases. New Journal of Chemistry, 2004, 28(9): 1073-1082.
DOI URL |
[2] | MUNIRASU S, AGGARWAL R, BASKARAN D. Highly efficient recyclable hydrated-clay supported catalytic system for atom transfer radical polymerization. Chemical Communications, 2009(30): 4518-4520. |
[3] |
SOETAREDJO F E, AYUCITRA A, ISMADJI S, et al. KOH/ bentonite catalysts for transesterification of palm oil to biodiesel. Applied Clay Science, 2011, 53(2): 341-346.
DOI URL |
[4] |
BIAN Z, KAWI S. Preparation, characterization and catalytic application of phyllosilicate: a review. Catalysis Today, 2020, 339: 3-23.
DOI URL |
[5] |
HERNEY-RAMIREZ J, VICENTE MA, MADEIRA LM. Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review. Applied Catalysis B: Environmental, 2010, 98(1): 10-26.
DOI URL |
[6] |
KUMAR DUTTA D, JYOTI BORAH B, POLLOV SARMAH P. Recent advances in metal nanoparticles stabilization into nanopores of montmorillonite and their catalytic applications for fine chemicals synthesis. Catalysis Reviews, 2015, 57(3): 257-305.
DOI URL |
[7] |
JIANG B, LI L, BIAN Z, et al. Hydrogen generation from chemical looping reforming of glycerol by Ce-doped nickel phyllosilicate nanotube oxygen carriers. Fuel, 2018, 222: 185-192.
DOI URL |
[8] |
GHIAT I, BOUDJEMAA A, SAADI A, et al. Efficient hydrogen generation over a novel Ni phyllosilicate photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 382: 111952.
DOI URL |
[9] |
LU Y, GUO D, ZHAO Y, et al. Confined high dispersion of Ni nanoparticles derived from nickel phyllosilicate structure in silicalite-2 shell for dry reforming of methane with enhanced performance. Microporous and Mesoporous Materials, 2021, 313: 110842.
DOI URL |
[10] |
KIM B, KIM JS, KIM H, et al. Amorphous multinary phyllosilicate catalysts for electrochemical water oxidation. Journal of Materials Chemistry A, 2019, 7(31): 18380-18387.
DOI URL |
[11] |
DI W, CHENG J, TIAN S, et al. Synthesis and characterization of supported copper phyllosilicate catalysts for acetic ester hydrogennation to ethanol. Applied Catalysis A: General, 2016, 510: 244-259.
DOI URL |
[12] |
BIAN Z, ZHONG W, YU Y, et al. Cu/SiO2 derived from copper phyllosilicate for low-temperature water-gas shift reaction: role of Cu+ sites. International Journal of Hydrogen Energy, 2020, 45(51): 27078-27088.
DOI URL |
[13] | LEE Y C, KIM E J, YANG J W, et al. Removal of malachite green by adsorption and precipitation using aminopropyl functionalized magnesium phyllosilicate. Journal of Hazardous Materials, 2011, 192(1): 62-70. |
[14] |
SIVAIAH M V, PETIT S, BEAUFORT M F, et al. Nickel based catalysts derived from hydrothermally synthesized 1 : 1 and 2 : 1 phyllosilicates as precursors for carbon dioxide reforming of methane. Microporous and Mesoporous Materials, 2011, 140(1/2/3): 69-80.
DOI URL |
[15] |
MCDONALD A, SCOTT B, VILLEMURE G. Hydrothermal preparation of nanotubular particles of a 1 : 1 nickel phyllosilicate. Microporous and Mesoporous Materials, 2009, 120(3): 263-266.
DOI URL |
[16] |
YANG Y, LIANG Q, LI J, et al. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Research, 2011, 4(9): 882-890.
DOI URL |
[17] |
WHITE R D, BAVYKIN D V, WALSH F C. Morphological control of synthetic Ni3Si2O5(OH)4 nanotubes in an alkaline hydrothermal environment. Journal of Materials Chemistry A, 2013, 1(3): 548-556.
DOI URL |
[18] | GUO Z, DU F, LI G, et al. Controlled synthesis of mesoporous SiO2/Ni3Si2O5(OH)4 core-shell microspheres with tunable chamber structures via a self-template method. Chemical Communications, 2008(25): 2911-2913. |
[19] |
CHEN D, GUO Z, SUN T, et al. Controlled synthesis and catalytic properties of mesoporous nickel-silica core-shell microspheres with tunable chamber structures. Materials Research Bulletin, 2012, 47(9): 2344-2348.
DOI URL |
[20] |
WANG T, LIU C, MA X, et al. Synthesis of Ni3Si4O10(OH)2 porous microspheres as support of Pd catalyst for hydrogenation reaction. Nanomaterials, 2019, 9(7): 998.
DOI URL |
[21] |
GROEN J C, PEFFER L A A, PÉREZ-RAMÍREZ J. Pore size determination in modified micro- and mesoporous materials. Pitfalls and limitations in gas adsorption data analysis. Microporous and Mesoporous Materials, 2003, 60(1/2/3): 1-17.
DOI URL |
[22] |
DONG F, XIONG T, WANG R, et al. Growth mechanism and photocatalytic activity of self-organized N-doped (BiO)2CO3 hierarchical nanosheet microspheres from bismuth citrate and urea. Dalton Transactions, 2014, 43(18): 6631-6642.
DOI URL |
[23] |
LI J, XU L, SUN P, et al. Novel application of red mud: facile hydrothermal-thermal conversion synthesis of hierarchical porous AlOOH and Al2O3 microspheres as adsorbents for dye removal. Chemical Engineering Journal, 2017, 321: 622-634.
DOI URL |
[24] |
MCKAY G, BLAIR H S, GARDNER J R. Adsorption of dyes on chitin. I. Equilibrium studies. Journal of Applied Polymer Science, 1982, 27(8): 3043-3057.
DOI URL |
[1] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[2] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[3] | WANG Shiyi, FENG Aihu, LI Xiaoyan, YU Yun. Pb (II) Adsorption Process of Fe3O4 Supported Ti3C2Tx [J]. Journal of Inorganic Materials, 2023, 38(5): 521-528. |
[4] | YU Yefan, XU Ling, NI Zhongbing, SHI Dongjian, CHEN Mingqing. Prussian Blue Modified Biochar: Preparation and Adsorption of Ammonia Nitrogen from Sewage [J]. Journal of Inorganic Materials, 2023, 38(2): 205-212. |
[5] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[6] | LIU Cheng, ZHAO Qian, MOU Zhiwei, LEI Jiehong, DUAN Tao. Adsorption Properties of Novel Bismuth-based SiOCNF Composite Membrane for Radioactive Gaseous Iodine [J]. Journal of Inorganic Materials, 2022, 37(10): 1043-1050. |
[7] | ZHOU Fan, BI Hui, HUANG Fuqiang. Ultra-large Specific Surface Area Activated Carbon Synthesized from Rice Husk with High Adsorption Capacity for Methylene Blue [J]. Journal of Inorganic Materials, 2021, 36(8): 893-903. |
[8] | YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite [J]. Journal of Inorganic Materials, 2021, 36(8): 856-864. |
[9] | SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation [J]. Journal of Inorganic Materials, 2021, 36(6): 561-569. |
[10] | XI Wen, LI Haibo. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization [J]. Journal of Inorganic Materials, 2021, 36(3): 283-291. |
[11] | GUO Yu, JIANG Xiaoqing, WU Hongmei, XIAO Yu, WU Dafu, LIU Xin. Preparation of 2-hydroxy-1-naphthalene Functionalized SBA-15 Adsorbent for the Adsorption of Chromium(III) Ions from Aqueous Solution [J]. Journal of Inorganic Materials, 2021, 36(11): 1163-1170. |
[12] | ZHANG Ruihong, WEI Xin, LU Zhanhui, AI Yuejie. Training Model for Predicting Adsorption Energy of Metal Ions Based on Machine Learning [J]. Journal of Inorganic Materials, 2021, 36(11): 1178-1184. |
[13] | HE Junlong, SONG Erhong, WANG Lianjun, JIANG Wan. DFT Calculation of NO Adsorption on Cr Doped Graphene [J]. Journal of Inorganic Materials, 2021, 36(10): 1047-1052. |
[14] | SONG Keke, HUANG Hao, LU Mengjie, YANG Anchun, WENG Jie, DUAN Ke. Hydrothermal Preparation and Characterization of Zn, Si, Mg, Fe Doped Hydroxyapatite [J]. Journal of Inorganic Materials, 2021, 36(10): 1091-1096. |
[15] | ZHU Enquan,MA Yuhua,AINIWA· Munire,SU Zhi. Adsorption-enrichment and Localized-photodegradation of Bentonite-supported Red Phosphorus Composites [J]. Journal of Inorganic Materials, 2020, 35(7): 803-808. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||