Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 856-864.DOI: 10.15541/jim20200663
Special Issue: 【虚拟专辑】放射性污染物去除(2020~2021); 【能源环境】水体污染物去除
• RESEARCH ARTICLE • Previous Articles Next Articles
YU Xiangkun1(), LIU Kun1, LI Zhipeng1, ZHAO Yulu1, SHEN Jinyou2, MAO Ping1(), SUN Aiwu1(), JIANG Jinlong1
Received:
2020-11-19
Revised:
2021-01-04
Published:
2021-08-20
Online:
2021-03-01
Contact:
MAO Ping, associate professor. E-mail: pingmao@hyit.edu.cn; SUN Aiwu, professor. E-mail: sunaiwu@hyit.edu.cn
About author:
YU Xiangkun(1993-), male, Master candidate. E-mail: yxk0079@163.com
Supported by:
CLC Number:
YU Xiangkun, LIU Kun, LI Zhipeng, ZHAO Yulu, SHEN Jinyou, MAO Ping, SUN Aiwu, JIANG Jinlong. Efficient Adsorption of Radioactive Iodide by Copper/Palygorskite Composite[J]. Journal of Inorganic Materials, 2021, 36(8): 856-864.
Composition | PAL | Cu@PAL |
---|---|---|
SiO2 | 60.96 | 59.87 |
MgO | 9.36 | 8.12 |
Al2O3 | 12.20 | 11.07 |
Fe2O3 | 8.00 | 7.51 |
CaO | 5.55 | 0.46 |
CuO | 0.01 | 9.83 |
Na2O | 0.12 | 0.01 |
LOI | 3.80 | 3.13 |
Table1 Chemical analysis (XRF) of PAL and Cu@PAL/wt%
Composition | PAL | Cu@PAL |
---|---|---|
SiO2 | 60.96 | 59.87 |
MgO | 9.36 | 8.12 |
Al2O3 | 12.20 | 11.07 |
Fe2O3 | 8.00 | 7.51 |
CaO | 5.55 | 0.46 |
CuO | 0.01 | 9.83 |
Na2O | 0.12 | 0.01 |
LOI | 3.80 | 3.13 |
Fig. 4 (a) TEM image of Cu@PAL and elemental mappings of (b) N, (c) O, (d) Al, (e) Si, and (f) Cu; and high magnification TEM (g) and HRTEM (h) images of Cu@PAL
Adsorbent | pH | Qe/ (mg∙g-1) | Utilization efficiency/% | Ref. |
---|---|---|---|---|
Cuprite sulfide | 7 | 6.1 | — | [ |
Cu2O/Cu-C | 7 | 41.2 | 10.38 | [ |
Hollow Cu/Cu2O | 7 | 33.0 | 1.85 | [ |
Core-shell Cu/Cu2O | 7 | 22.9 | 1.4 | [ |
Cu | 7 | 6.35 | 0.32 | [ |
Cu/PAL | 7 | 116.1 | 71.98 | This work |
Table 2 Comparison of several Cu based adsorbents for iodide adsorption
Adsorbent | pH | Qe/ (mg∙g-1) | Utilization efficiency/% | Ref. |
---|---|---|---|---|
Cuprite sulfide | 7 | 6.1 | — | [ |
Cu2O/Cu-C | 7 | 41.2 | 10.38 | [ |
Hollow Cu/Cu2O | 7 | 33.0 | 1.85 | [ |
Core-shell Cu/Cu2O | 7 | 22.9 | 1.4 | [ |
Cu | 7 | 6.35 | 0.32 | [ |
Cu/PAL | 7 | 116.1 | 71.98 | This work |
Langmuir model | Frenudlich model | ||||
---|---|---|---|---|---|
Qm/(mg∙g-1) | Kl | R2 | Kf | 1/n | R2 |
1.02915 | 0.86041 | 0.99632 | 0.38173 | 0.51042 | 0.81026 |
Table 3 Isotherm parameters for the adsorption of I- anions by Cu@PAL
Langmuir model | Frenudlich model | ||||
---|---|---|---|---|---|
Qm/(mg∙g-1) | Kl | R2 | Kf | 1/n | R2 |
1.02915 | 0.86041 | 0.99632 | 0.38173 | 0.51042 | 0.81026 |
Time/h | Qe/(mg∙g-1) | |
---|---|---|
Cu@PAL | Nano-Cu | |
0 | 74.2 | 234.7 |
12 | 69.4 | 133.8 |
24 | 68.1 | 110.4 |
48 | 64.1 | 104.6 |
72 | 60.2 | 96.3 |
144 | 58.7 | 88.4 |
Table 4 Adsorption properties of Cu@PAL and nano Cu exposed to air
Time/h | Qe/(mg∙g-1) | |
---|---|---|
Cu@PAL | Nano-Cu | |
0 | 74.2 | 234.7 |
12 | 69.4 | 133.8 |
24 | 68.1 | 110.4 |
48 | 64.1 | 104.6 |
72 | 60.2 | 96.3 |
144 | 58.7 | 88.4 |
Fig. 11 Absorption kinetic curve (a), fitting curves of the pseudo first order kinetic model (b) and pseudo second order kinetic model (c) for adsorption kinetic of Cu@PAL
Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|
Qm/ (mg∙g-1) | k1/(g∙(mmol∙ g-1)-1) | R2 | Qm/ (mg∙g-1) | k2/(g∙(mmol∙ g-1)-1) | R2 |
56.10 | 0.4469 | 0.9704 | 74.1840 | 0.03549 | 0.9976 |
Table 5 Kinetic parameters for the adsorption of I- by Cu@PAL
Pseudo-first-order | Pseudo-second-order | ||||
---|---|---|---|---|---|
Qm/ (mg∙g-1) | k1/(g∙(mmol∙ g-1)-1) | R2 | Qm/ (mg∙g-1) | k2/(g∙(mmol∙ g-1)-1) | R2 |
56.10 | 0.4469 | 0.9704 | 74.1840 | 0.03549 | 0.9976 |
Adsorbent | cNaCl/(mol∙L-1) | Desorption efficiency/% |
---|---|---|
Cu@PAL | 0 | 21.3 |
0.1 | 32.1 | |
Nano-Cu | 0 | 87.4 |
0.1 | 94.1 |
Table 6 Leaching or desorption efficiencies of Cu@PAL and nano-Cu after adsorption
Adsorbent | cNaCl/(mol∙L-1) | Desorption efficiency/% |
---|---|---|
Cu@PAL | 0 | 21.3 |
0.1 | 32.1 | |
Nano-Cu | 0 | 87.4 |
0.1 | 94.1 |
[1] | KBERGER T. Progress of renewable electricity replacing fossil fuels. Global Energy Interconnection , 2018, 1(1):48-52. |
[2] |
TRUESDALE V W, NAUSCH G, BAKER A. The distribution of iodine in the Baltic Sea during summer. Mar. Chem. , 2001, 74(2):87-98.
DOI URL |
[3] |
GMEZ-GUZM N J M, HOLM E, NIAGOLOVA N, et al. Influence of releases of 129I and 137Cs from European reprocessing facilities in Fucus vesiculosus and seawater from the Kattegat and Skagerrak areas. Chemosphere , 2014, 108:76-84.
DOI URL |
[4] |
LI C, WEI Y, WANG X, et al. Efficient and rapid adsorption of iodide ion from aqueous solution by porous silica spheres loaded with calcined Mg-Al layered double hydroxide. Journal of the Taiwan Institute of Chemical Engineers , 2018, 85:193-200.
DOI URL |
[5] |
HOSKINS J S, KARANFIL T, SERKIZ S M. Removal and sequestration of iodide using silver-impregnated activated carbon. Environ. Sci. Technol. , 2002, 36(4):784-789.
DOI URL |
[6] |
THEISS F L, AYOKO G A, FROST R L. Iodide removal using LDH technology. Chemical Engineering Journal , 2016, 296:300-309.
DOI URL |
[7] |
INOUE H. Effects of Co-ions on transport of iodide ions through a non-conventional anion exchange paper membrane. J. Membr. Sci. , 2004, 228(2):209-215.
DOI URL |
[8] |
LIU S, WANG N, ZHANG Y, et al. Efficient removal of radioactive iodide ions from water by three-dimensional Ag2O-Ag/TiO2 composites under visible light irradiation. J. Hazard Mater. , 2015, 284:171-181.
DOI URL |
[9] |
MAO P, LIU Y, JIAO Y, et al. Enhanced uptake of iodide on Ag@Cu2O nanoparticles. Chemosphere , 2016, 164:396-403.
DOI URL |
[10] |
CHOI M H, JEONG S W, SHIM H E, et al. Efficient bioremediation of radioactive iodine using biogenic gold nanomaterial-containing radiation-resistant bacterium, Deinococcus radiodurans R1. Chemical Communications , 2017, 53(28):3937-3940.
DOI URL |
[11] |
ZHANG W, LI Q, MAO Q, et al. Cross-linked chitosan microspheres: an efficient and eco-friendly adsorbent for iodide removal from waste water. Carbohydr. Polym. , 2019, 209:215-222.
DOI URL |
[12] |
MAO P, QI L, LIU X, et al. Synthesis of Cu/Cu2O hydrides for enhanced removal of iodide from water. J. Hazard Mater. , 2017, 328:21-28.
DOI URL |
[13] | LIU L, LIU W, ZHAO X, et al. Selective capture of iodide from solutions by microrosette-like δ-Bi2O3. ACS Applied Materials & Interfaces , 2014, 6(18):16082-16090. |
[14] |
MAILEN J C, HORNER D E. Removal of iodine from reactor fuel solutions as insoluble PdI2. Nucl. Technol. , 1977, 33(3):260-263.
DOI URL |
[15] |
BALSLEY S D, BRADY P V, KRUMHANSL J L, et al. Iodide retention by metal sulfide surfaces: cinnabar and chalcocite. Environ. Sci. Technol. , 1996, 30(10):3025-3027.
DOI URL |
[16] | YAQUAN W, FENG Y, JIANG J, et al. Designing of recyclable attapulgite for wastewater treatments: a review. ACS Sustainable Chemistry & Engineering , 2018, 7(2):1855-1869. |
[17] |
CHEN H, ZHAO Y, WANG A. Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite. J. Hazard Mater. , 2007, 149(2):346-354.
DOI URL |
[18] | 王爱勤, 王文波, 郑易安, et al. 凹凸棒石棒晶束解离及其纳米化功能复合材料. 北京: 科学出版社, 2014. |
[19] | ZHOU Y, HE J, WANG H, et al. Carbon nanofiber yarns fabricated from co-electrospun nanofibers. Materials & Design , 2016, 95:591-598. |
[20] |
MAO P, JIANG J, PAN Y, et al. Enhanced uptake of iodide from solutions by hollow Cu-based adsorbents. Materials , 2018, 11(5):769.
DOI URL |
[21] |
MAO P, YU X, LIU K, et al. Rapid and reversible adsorption of radioactive iodide from wastewaters by green and low-cost palygorskite-based microspheres. J. Radioanal Nucl. Chem. , 2020, 325(1):303-313.
DOI URL |
[22] |
ZHANG Y, YU C, HU P, et al. Mechanical and thermal properties of palygorskite poly(butylene succinate) nanocomposite. Applied Clay Science , 2016, 119:96-102.
DOI URL |
[23] |
CARAZO E, BORREGO-S NCHEZ A, GARC A-VILL N F, et al. Adsorption and characterization of palygorskite-isoniazid nanohybrids. Applied Clay Science , 2018, 160:180-185.
DOI URL |
[24] |
BA N, ZHU L, LI H, et al. 3D rod-like copper oxide with nanowire hierarchical structure: ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism. Solid State Sciences , 2016, 53:23-29.
DOI URL |
[25] |
YAO S, ZHANG H, CHEN Z, et al. Promotion of graphitic carbon oxidation via stimulating CO2 desorption by calcium carbonate. J. Hazard Mater. , 2019, 363:10-15.
DOI URL |
[26] |
THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. , 2015, 87(9/10):1051-1069.
DOI URL |
[27] |
LEF VRE G, BESSI RE J, EHRHARDT J J, et al. Immobilization of iodide on copper(I) sulfide minerals. Journal of Environmental Radioactivity , 2003, 70(1/2):73-83.
DOI URL |
[28] |
ZHANG X, GU P, LI X, et al. Efficient adsorption of radioactive iodide ion from simulated wastewater by nano Cu2O/Cu modified activated carbon. Chemical Engineering Journal , 2017, 322:129-139.
DOI URL |
[29] |
HAQ Z, BANCROFT G M, FYFE W S, et al. Sorption of iodide on copper. Environ. Sci. Technol. , 1980, 14(9):1106-1110.
DOI URL |
[30] |
WU C K, YIN M, O'BRIEN S, et al. Quantitative analysis of copper oxide nanoparticle composition and structure by X-ray photoelectron spectroscopy. Chemistry of Materials , 2006, 18(25):6054-6058.
DOI URL |
[1] | WANG Wei-Qing,FENG Qi-Ming,DONG Fa-Qin,LI Hu-Jie,ZHAO Xiao-Dong. Preparation and Properties of Fe3O4/Clinoptilolite Magnetic Composite [J]. Journal of Inorganic Materials, 2010, 25(4): 401-405. |
[2] | LI Zhi-Liang,ZHI Jian-Ping,ZHANG Yu-Lin. Effects of Different Starting Materials on Preparation and Adsorption Properties of the Mixed Li+ and Ca2+ Exchanged Low Silica X-type Zeolites(LSX) [J]. Journal of Inorganic Materials, 2008, 23(5): 975-980. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||