Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 789-806.DOI: 10.15541/jim20200544
Special Issue: 【虚拟专辑】透明陶瓷与光学晶体
• REVIEW • Previous Articles Next Articles
LI Jiang1(), DING Jiyang1,2, HUANG Xinyou2
Received:
2020-09-17
Revised:
2020-12-07
Published:
2021-08-20
Online:
2021-03-01
About author:
Li Jiang(1977-), male, professor. E-mail: lijiang@mail.sic.ac.cn
Supported by:
CLC Number:
LI Jiang, DING Jiyang, HUANG Xinyou. Rare Earth Doped Gd2O2S Scintillation Ceramics[J]. Journal of Inorganic Materials, 2021, 36(8): 789-806.
Fig. 2 History (1940-2017) of first publication of scintillators with light output of >20000 ph/MeV, representing scintillators published in peer-reviewed articles [18] Blue bars: new compounds; Yellow bars: known compounds with new activator or codoped; Red letters: commercial products; Green letters: under development
Scintillator | Density/(g·cm-3) | Zeff/cm | Decay time/ns | λem/nm | Light yield/(×103, ph/MeV) | Ref. |
---|---|---|---|---|---|---|
NaI:Tl | 3.67 | 50.8 | 230 | 415 | 43 | [ |
LaI:Ce | 5.6 | 54.2 | 1-2 | 452, 502 | 0.2-0.3 | [ |
SrI2:Eu | 4.55 | 49.85 | 1200 | 435 | 115 | [ |
BaBrI:Eu | 5.21 | 51.1 | 331-714 | 413 | 89 | [ |
Bi4Ge3O12 | 7.13 | 75.2 | 300 | 505 | 8.2 | [ |
PbWO4 | 8.28 | 75.6 | 6 | 420 | 0.1 | [ |
CaWO4 | 6.1 | 63.8 | 600 | 430 | 20 | [ |
Gd2O2S:Pr,Ce,F | 7.34 | 61.1 | 4000 | 510 | 35 | [ |
YAlO3:Ce | 5.5 | 33.6 | 30 | 350 | 21 | [ |
Y3Al5O12:Pr | 4.56 | 32.6 | 23.4 | 310, 380 | 9.25 | [ |
Gd2SiO5:Ce | 6.71 | 59.4 | 60-600 | 430 | 12.5 | [ |
Y2SiO5:Pr | 4.45 | 35 | 6.5-33 | 270, 35 | 4.58 | [ |
Gd3Al2Ga3O12:Ce | 6.67 | 50.6 | 80-800 | 520 | 46 | [ |
(Gd,Y)3(Al,Ga)5O12:Ce | 5.8 | 45 | 100-600 | 560 | 60 | [ |
Table 1 Optical and scintillation properties of selected scintillators
Scintillator | Density/(g·cm-3) | Zeff/cm | Decay time/ns | λem/nm | Light yield/(×103, ph/MeV) | Ref. |
---|---|---|---|---|---|---|
NaI:Tl | 3.67 | 50.8 | 230 | 415 | 43 | [ |
LaI:Ce | 5.6 | 54.2 | 1-2 | 452, 502 | 0.2-0.3 | [ |
SrI2:Eu | 4.55 | 49.85 | 1200 | 435 | 115 | [ |
BaBrI:Eu | 5.21 | 51.1 | 331-714 | 413 | 89 | [ |
Bi4Ge3O12 | 7.13 | 75.2 | 300 | 505 | 8.2 | [ |
PbWO4 | 8.28 | 75.6 | 6 | 420 | 0.1 | [ |
CaWO4 | 6.1 | 63.8 | 600 | 430 | 20 | [ |
Gd2O2S:Pr,Ce,F | 7.34 | 61.1 | 4000 | 510 | 35 | [ |
YAlO3:Ce | 5.5 | 33.6 | 30 | 350 | 21 | [ |
Y3Al5O12:Pr | 4.56 | 32.6 | 23.4 | 310, 380 | 9.25 | [ |
Gd2SiO5:Ce | 6.71 | 59.4 | 60-600 | 430 | 12.5 | [ |
Y2SiO5:Pr | 4.45 | 35 | 6.5-33 | 270, 35 | 4.58 | [ |
Gd3Al2Ga3O12:Ce | 6.67 | 50.6 | 80-800 | 520 | 46 | [ |
(Gd,Y)3(Al,Ga)5O12:Ce | 5.8 | 45 | 100-600 | 560 | 60 | [ |
Property | Feature |
---|---|
Molecular formula | Gd2O2S |
Relative molecular mass | 378 |
Crystal structure | Hexagonal crystal system |
Cell parameters | a=0.38514 nm, c/a=1.73 |
Melting point | 2070 ℃ |
Density | 7.34 g/cm3 |
Zeff | 61.1 |
Index of refraction | 2.2 |
Band gap | 4.6-4.8 eV |
Phonon energy | 520 cm-1 |
Color | Colorless |
Technical aspects | Chemical stability |
Table 2 Basic physical and chemical property of Gd2O2S[41,42]
Property | Feature |
---|---|
Molecular formula | Gd2O2S |
Relative molecular mass | 378 |
Crystal structure | Hexagonal crystal system |
Cell parameters | a=0.38514 nm, c/a=1.73 |
Melting point | 2070 ℃ |
Density | 7.34 g/cm3 |
Zeff | 61.1 |
Index of refraction | 2.2 |
Band gap | 4.6-4.8 eV |
Phonon energy | 520 cm-1 |
Color | Colorless |
Technical aspects | Chemical stability |
Fig. 4 FE-SEM images of different powder[52] (a) Commercial Gd2O3 powder; (b) Gd2O3 powder synthesized by coprecipitation; (c) Synthesis by commercial powder; (d) Synthesis by coprecipitation powder
Fig. 7 Fluorescence spectra of GOS:Tb powders under different accelerating voltages and electron beam currents[70] (A) Different accelerating voltages; (B) Different beam currents; (C) Variation of luminous intensity with voltage and current; (D) Calculated incident electron depth varied with voltage Colorful figures are available on website
Fig. 9 FESEM images of the fracture surfaces and EDS analysis[58] (a) Green body; (b) Pre-sintered body; (c) After hot isotatic pressing; (d) EDS analysis of the selected area in (c)
Fig. 10 Microstructures of GOS ceramics prepared by pressureless sintering under different conditions[78] (a) 1380 ℃×6 h, 1.0 K/min; (b) 1300 ℃×3 h, 2.8 K/min
Fig. 11 Pulse height spectra (a) of GOS:Pr, Ce, F ceramics with different thicknesses prepared by pressureless sintering and commercial GOS ceramics, and afterglow curve (b) of GOS:Pr,Ce,F ceramics by pressureless sintering and commercial ceramics[79] (a) Sample thickness is 0.5 mm, 1.0 mm, and 1.5 mm, respectively; (b) Commercial ceramic thickness is 0.5 mm Colorful figures are available on website
Scintillators | λem/nm | Decay time/μs | Afterglow/(%, after 3 ms/100 ms) | Light yield/(ph·MeV-1) | Ref. |
---|---|---|---|---|---|
Gd2O2S:Pr,Ce,F | 510 | 4 | <0.1/<0.01 | 35000 | [ |
Gd2O2S:Tb | 545 | 1×103 | - | 60000 | [ |
Gd2O2S:Eu | 625 | 1×103 | 0.14%@3 ms | 60000 | [ |
Gd2O2S:Eu,Tb,Ce,Ca | 600 | - | 0.18%@30 ms | 62000 | [ |
Table 3 Scintillation property of GOS ceramics doped with different rare earth ions
Scintillators | λem/nm | Decay time/μs | Afterglow/(%, after 3 ms/100 ms) | Light yield/(ph·MeV-1) | Ref. |
---|---|---|---|---|---|
Gd2O2S:Pr,Ce,F | 510 | 4 | <0.1/<0.01 | 35000 | [ |
Gd2O2S:Tb | 545 | 1×103 | - | 60000 | [ |
Gd2O2S:Eu | 625 | 1×103 | 0.14%@3 ms | 60000 | [ |
Gd2O2S:Eu,Tb,Ce,Ca | 600 | - | 0.18%@30 ms | 62000 | [ |
Isotope | Reaction | Cross-section of thermal neutron adsorption/m2 | Natural abundance/% | Ref. |
---|---|---|---|---|
6Li | 3H, 4He | 9.1×10-26 | 7.5 | [ |
10B | α, γ, 7Li | 3.83×10-25 | 19.9 | [ |
113Cd | γ, e- | 2.1×10-24 | 12.2 | [ |
155Gd | γ, e- | 6.09×10-24 | 14.7 | [ |
157Gd | γ, e- | 2.55×10-23 | 15.7 | [ |
Table 4 Property of commonly used neutron imaging scintillation screen nuclides
Isotope | Reaction | Cross-section of thermal neutron adsorption/m2 | Natural abundance/% | Ref. |
---|---|---|---|---|
6Li | 3H, 4He | 9.1×10-26 | 7.5 | [ |
10B | α, γ, 7Li | 3.83×10-25 | 19.9 | [ |
113Cd | γ, e- | 2.1×10-24 | 12.2 | [ |
155Gd | γ, e- | 6.09×10-24 | 14.7 | [ |
157Gd | γ, e- | 2.55×10-23 | 15.7 | [ |
Scintillator | Density/ (g·cm-3) | λem/nm | Light yield | α/β ratio | τ/ns | Ref. | ||
---|---|---|---|---|---|---|---|---|
Neutron/(×103, ph·neu.-1) | γ/(×103, ph·MeV-1) | Neutron | γ | |||||
6Li-glass:Ce | 2.5 | 395 | 6 | 4 | 0.3 | 70 | 70 | [ |
6LiI:Eu | 4.1 | 470 | 50 | 12 | 0.87 | 1.4×103 | 1.4×103 | [ |
6LiF/ZnS:Ag | 2.6 | 450 | 160 | 75 | 0.44 | 8×104 | 100 | [ |
LiYSiO4:Ce | 3.8 | 410 | 10 | 10 | - | - | 3.8×104 | [ |
6Li6Gd(11BO3)3:Ce | 3.5 | 385, 415 | 40 | 25 | 0.32 | - | 200,800 | [ |
Cs26LiYCl6:Ce | 3.3 | 380 | 70 | 22 | 0.66 | 100,103 | 100,103 | [ |
Table 5 Inorganic scintillators used in neutron imaging and their properties
Scintillator | Density/ (g·cm-3) | λem/nm | Light yield | α/β ratio | τ/ns | Ref. | ||
---|---|---|---|---|---|---|---|---|
Neutron/(×103, ph·neu.-1) | γ/(×103, ph·MeV-1) | Neutron | γ | |||||
6Li-glass:Ce | 2.5 | 395 | 6 | 4 | 0.3 | 70 | 70 | [ |
6LiI:Eu | 4.1 | 470 | 50 | 12 | 0.87 | 1.4×103 | 1.4×103 | [ |
6LiF/ZnS:Ag | 2.6 | 450 | 160 | 75 | 0.44 | 8×104 | 100 | [ |
LiYSiO4:Ce | 3.8 | 410 | 10 | 10 | - | - | 3.8×104 | [ |
6Li6Gd(11BO3)3:Ce | 3.5 | 385, 415 | 40 | 25 | 0.32 | - | 200,800 | [ |
Cs26LiYCl6:Ce | 3.3 | 380 | 70 | 22 | 0.66 | 100,103 | 100,103 | [ |
Scintillator | Density/(g·cm-3) | Thickness to stop 99%*/mm | λem/nm | Light yield/ (ph·MeV-1) | Decay time/μs | Afterglow/(% after 3 ms/100 ms) | Ref. |
---|---|---|---|---|---|---|---|
CsI:Tl | 4.51 | 6.8 | 550 | 66000 | 1.22 | >2/0.3 | [ |
Bi4Ge3O12 | 7.13 | - | 480 | 9000 | 0.30 | 0.005%@3 ms | [ |
CdWO4 | 7.9 | 2.4 | 495 | 20000 | 5.00 | <0.1/0.02 | [ |
(Y,Gd)2O3:Eu,Pr | 5.9 | 6.1 | 610 | 42000 | 1000 | 4.9/<0.01 | [ |
Gd2O2S:Pr,Ce,F | 7.3 | 2.9 | 510 | 35000 | 4 | <0.1/<0.01 | [ |
Gd3(Ga,Al)2O12:Ce | 6.2 | - | 540 | 58000 | 0.09-0.17 | <0.01%@20 ms | [ |
Table 6 Inorganic scintillators for medical imaging and their properties
Scintillator | Density/(g·cm-3) | Thickness to stop 99%*/mm | λem/nm | Light yield/ (ph·MeV-1) | Decay time/μs | Afterglow/(% after 3 ms/100 ms) | Ref. |
---|---|---|---|---|---|---|---|
CsI:Tl | 4.51 | 6.8 | 550 | 66000 | 1.22 | >2/0.3 | [ |
Bi4Ge3O12 | 7.13 | - | 480 | 9000 | 0.30 | 0.005%@3 ms | [ |
CdWO4 | 7.9 | 2.4 | 495 | 20000 | 5.00 | <0.1/0.02 | [ |
(Y,Gd)2O3:Eu,Pr | 5.9 | 6.1 | 610 | 42000 | 1000 | 4.9/<0.01 | [ |
Gd2O2S:Pr,Ce,F | 7.3 | 2.9 | 510 | 35000 | 4 | <0.1/<0.01 | [ |
Gd3(Ga,Al)2O12:Ce | 6.2 | - | 540 | 58000 | 0.09-0.17 | <0.01%@20 ms | [ |
Fig. 17 Afterglow (a) and X-ray absorption efficiency (b) curves of German Siemens GOS (UFC ) scintillation ceramics[117] Colorful figures are available on website
Manufacturer | λem/nm | Light yield/(ph·MeV-1) | Decay time/μs | Afterglow | Ref. |
---|---|---|---|---|---|
Siemens (Germany) | 512 | 50000 | 3 | 0.01%@2.5-4 ms | [ |
Philips (Netherlands) | 514 | 40000 | 3 | 0.02%@3 ms | [ |
Toshiba (Japan) | 512 | 36000 | 3 | 0.08%@10 ms | [ |
Hitachi (Japan) | 512 | 42000 | 3 | 0.001%@300 ms | [ |
Iray (China) | 510 | 27000 | 3 | 0.1%@3 ms | [ |
Table 7 Performance of GOS:Pr,Ce(F) scintillation ceramics prepared in the major companies abroad and at home
Manufacturer | λem/nm | Light yield/(ph·MeV-1) | Decay time/μs | Afterglow | Ref. |
---|---|---|---|---|---|
Siemens (Germany) | 512 | 50000 | 3 | 0.01%@2.5-4 ms | [ |
Philips (Netherlands) | 514 | 40000 | 3 | 0.02%@3 ms | [ |
Toshiba (Japan) | 512 | 36000 | 3 | 0.08%@10 ms | [ |
Hitachi (Japan) | 512 | 42000 | 3 | 0.001%@300 ms | [ |
Iray (China) | 510 | 27000 | 3 | 0.1%@3 ms | [ |
[1] |
GLODO J, WANG Y, SHAWGO R, et al. New developments in scintillators for security applications. Physics Procedia , 2017, 90:285-290.
DOI URL |
[2] | LECOQ P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , 2016, 809:130-139. |
[3] |
MARTIN T, KOCH A, NIKL M. Scintillator materials for X-ray detectors and beam monitors. MRS Bulletin , 2017, 42(6):451-457.
DOI URL |
[4] |
NIKL M, YOSHIKAWA A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Advanced Optical Materials , 2015, 3(4):463-481.
DOI URL |
[5] |
WEBER M J. Inorganic scintillators: today and tomorrow. Journal of Luminescence , 2002, 100(1-4):35-45.
DOI URL |
[6] | VAN EIJK C W E. Inorganic-scintillator development. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2001, 460(1):1-14. |
[7] |
LEMPICKI A, BRECHER C, LINGERTAT H, et al. A ceramic version of the LSO scintillator. IEEE Transactions on Nuclear Science , 2008, 55(3):1148-1151.
DOI URL |
[8] | 潘裕柏, 李江, 姜本学. 先进光功能透明陶瓷. 北京: 科学出版社, 2013: 24-28. |
[9] |
MURRAY R B, MEYER A. Scintillation response of activated inorganic crystals to various charged particles. Physical Review , 1961, 122(3):815-826.
DOI URL |
[10] |
PAYNE S A, CHEREPY N J, HULL G, et al. Nonproportionality of scintillator detectors: theory and experiment. IEEE Transactions on Nuclear Science , 2009, 56(4):2506-2512.
DOI URL |
[11] |
KIRKIN R, MIKHAILIB V V, VASILEV A N. Recombination of correlated electron-hole pairs with account of hot capture with emission of optical phonons. IEEE Transactions on Nuclear Science , 2012, 59(5):2057-2064.
DOI URL |
[12] |
VASILEV A N, GEKTIN A V. Multiscale approach to estimation of scintillation characteristics. IEEE Transactions on Nuclear Science , 2013, 61(1):235-245.
DOI URL |
[13] |
NIKL M, LAGUTA V V, VEDDA A. Complex oxide scintillators: material defects and scintillation performance. Physica Status Solidi B , 2008, 245(9):1701-1722.
DOI URL |
[14] | LECOQ P, GEKTIN A, KORZHIK M. Scintillation Mechanisms in Inorganic Scintillators. Berlin: Springer , 2017: 125-174. |
[15] |
NIKL M, PEJCHAL J, MIHOKOVA E, et al. Antisite defect-free Lu3(GaxAl1-x)5O12:Pr scintillator. Applied Physics Letters , 2006, 88(14):141916.
DOI URL |
[16] | GEKTIN A, KORZHIK M. Inorganic Scintillators for Detector Systems. Berlin: Springer, 2017: 20-77. |
[17] | COLTMAN J W, MARSHALL F H. Some characteristics of the photo-multiplier radiation detector. Physical Review , 1947, 72:528. |
[18] |
DUJARDIN C, AUFFRAY E, BOURRET-COURCHESNE E, et al. Needs, trends, and advances in inorganic scintillators. IEEE Transactions on Nuclear Science , 2018, 65(8):1977-1997.
DOI URL |
[19] |
HOFSTADTER R. The detection of gamma-rays with thallium- activated sodium iodide crystals. Physical Review , 1949, 75(5):796-810.
DOI URL |
[20] | VANSCIVER W, HOFSTADTER R. Scintillations in thallium- activated CaI2 and CsI. Physical Review , 1951, 84(5):1062-1063. |
[21] |
WEBER M J, MONCHAMP R R. Luminescence of Bi4Ge3O12: spectral and decay properties. Journal of Applied Physics , 1973, 44(12):5495-5499.
DOI URL |
[22] | ERSHOV N N, ZAKHAROV N G, RODNYI P A. Spectral- kinetic study of the intrinsic-luminescence characteristics of a fluorite-type crystal. Optics and Spectroscopy , 1982, 53:51-54. |
[23] |
SAKAI E. Recent measurements on scintillator-photodetector systems. IEEE Transactions on Nuclear Science , 1987, 34(1):418-422.
DOI URL |
[24] | BESSIERE A, DORENBOS P, VAN EIJK C W E, et al. Luminescence and scintillation properties of the small band gap compound LaI3:Ce3+. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2005, 537(1/2):22-26. |
[25] |
CHEREPY N J, PAYNE S A, ASZTALOS S J, et al. Scintillators with potential to supersede lanthanum bromide. IEEE Transactions on Nuclear Science , 2009, 56(3):873-880.
DOI URL |
[26] | GUNDIAH G, BIZARRI G, HANRAHAN S M, et al. Structure and scintillation of Eu2+-activated solid solutions in the BaBr2-BaI2 system. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2011, 652(1):234-237. |
[27] |
HOLL I, LORENZ E, MAGERAS G. A measurement of the light yield of common inorganic scintillators. IEEE Transactions on Nuclear Science , 1988, 35(1):105-109.
DOI URL |
[28] | ANNENKOV A A, KORZHIK M V, LECOQ P. Lead tungstate scintillation material. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment , 2002, 490(1/2):30-50. |
[29] | VAN EIJK C W E. Inorganic scintillators in medical imaging. Physics in Medicine & Biology , 2002, 47(8):R85. |
[30] |
DORENBOS P, MAISMAN M, VAN EIJK C W E et al. Scintillation properties of Y2SiO5: Pr crystals. Radiation Effects and Defects in Solids , 1995, 135(1-4):325-328.
DOI URL |
[31] |
KAMADA K, YANAGIDA T, ENDO T, et al. 2 inch diameter single crystal growth and scintillation properties of Ce:Gd3Al2Ga3O12. Journal of Crystal Growth , 2012, 352(1):88-90.
DOI URL |
[32] |
CHEREPY N J, SEELEY Z M, PAYNE S A, et al. Development of transparent ceramic Ce-doped gadolinium garnet gamma spectrometers. IEEE Transactions on Nuclear Science , 2013, 60(3):2330-2335.
DOI URL |
[33] | CONTL M. State of the art and challenges of time-of-flight PET. Phys. Med.-Eur. J. Med. Phys. , 2009, 25(1):1-11. |
[34] |
NIKL M. Wide band gap scintillation materials: progress in the technology and material understanding. Physica Status Solidi A , 2000, 178(2):595-620.
DOI URL |
[35] | WANG C, REN G H. Research progress of garnet series scintillation crystals. Journal of the Chinese Ceramic Society , 2015, 43(7):882-891. |
[36] |
MOSZYNSKI M, LUDZIEJEWSKI T, WOLSKI D, et al. Properties of the YAG:Ce scintillator. Nuclear Instruments and Methods Physical Research Section A , 1994, 345(3):461-467.
DOI URL |
[37] | LI J, CHEN X P, KOU H M, et al. Recent development on garnet single crystal and ceramic scintillators. Journal of the Chinese Ceramic Society , 2018, 46(1):116-127. |
[38] | 刘书萍. LuAG:Ce透明闪烁陶瓷的制备及其性能优化研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2016. |
[39] | 陈肖朴. 高光输出快衰减铈掺杂石榴石闪烁陶瓷的制备与性能研究. 上海: 中国科学院上海硅酸盐研究所博士学位论文, 2020. |
[40] |
KAMADA K, KUROSAWA S, PRUSA P, et al. Cz grown 2-in. size Ce:Gd3(Al,Ga)5O12 single crystal; relationship between Al, Ga site occupancy and scintillation properties. Optical Materials , 2014, 36(12):1942-1945.
DOI URL |
[41] | 潘宏明. 中子成像用Gd2O2S:Tb闪烁陶瓷的制备与性能研究. 江苏: 江苏大学硕士学位论文, 2019. |
[42] |
DANIEL J H, SAWANT A, TEEPE M, et al. Fabrication of high aspect-ratio polymer microstructures for large-area electronic portal X-ray images. Sensors and Actuators A: Physical , 2007, 140(2):185-193.
DOI URL |
[43] | LIAN J B. First-principles study on the electronic structure and optical properties of Gd2O2S. Bulletin of the Chinese Ceramic Society , 2011, 30(05):1029-1033. |
[44] |
WU G Q, QIN H M, FENG S W, et al. Ultrafine Gd2O2S:Pr powders preparedvia urea precipitation method using SO2/SO42- as sulfuration agent-a comparative study. Powder Technology , 2017, 305:382-388.
DOI URL |
[45] |
HE C, XIA Z G, LIU Q L. Microwave solid state synthesis and luminescence properties of green-emitting Gd2O2S:Tb3+ phosphor. Optical Materials , 2015, 42:11-16.
DOI URL |
[46] |
ZHAN Y H, AI F R, CHEN F, et al. Intrinsically zirconium-89 labeled Gd2O2S:Eu nanoprobes for in vivo positron emission tomography and gamma-ray-induced radioluminescence imaging. Small , 2016, 12(21):2872-2876.
DOI URL |
[47] |
POPOVICI E J, MURESAN L, HRISTEA-SIMOC A, et al. Synthesis and characterisation of rare earth oxysulphide phosphors. I. Studies on the preparation of Gd2O2S:Tb phosphor by the flux method. Optical Materials , 2004, 27(3):559-565.
DOI URL |
[48] |
GRESKOVICH C, DUCLOS S. Ceramic scintillator. Annual Review of Materials Science , 1997, 27(3):69-88.
DOI URL |
[49] | PEARSON, RALPH G. Hard and soft acids and bases. Journal of the American Chemical society , 1963: 3533-3539. |
[50] |
HAN P D, ZHANG L, WANG L X, et al. Investigation on the amounts of Na2CO3 and sulphur to obtain pure Y2O2S and up-conversion luminescence of Y2O2S:Er. Journal of Rare Earths , 2011, 29(9):849-854.
DOI URL |
[51] |
DING Y J, YANG W M, ZHANG Q T, et al. Influence of alkali metal compound fluxes on Gd2O2S:Tb particle and luminescence. Journal of Materials Science: Materials in Electronics , 2015, 26(3):1982-1986.
DOI URL |
[52] |
DING Y J, HAN P D, WANG L X, et al. Preparation, morphology and luminescence properties of Gd2O2S:Tb with different Gd2O3 raw materials. Rare Metals , 2019, 38(3):221-226.
DOI URL |
[53] | USTABAEV P S, BAKHMETYEV V V. Synthesis and properties study of the X-ray phosphors Gd2O2S:Tb. Journal of Physics: Conference Series. IOP Publishing , 2020, 1560(1):012022. |
[54] |
TIAN Y, CAO W H, LUO X X, et al. Preparation and luminescence property of Gd2O2S:Tb X-ray nano-phosphors using the complex precipitation method. Journal of Alloys and Compounds , 2007, 433(1/2):313-317.
DOI URL |
[55] |
THIRUMALAI J, CHANDRAMOHAN R, DIVAKAR R, et al. Eu3+ doped gadolinium oxysulfide (Gd2O2S) nanostructures- synthesis and optical and electronic properties. Nanotechnology , 2008, 19(39):395703.
DOI URL |
[56] |
SONG Y H, YOU H P, HUANG Y J, et al. Highly uniform and monodisperse Gd2O2S:Ln3+ (Ln=Eu,Tb) submicrospheres: solvothermal synthesis and luminescence properties. Inorganic Chemistry , 2010, 49(24):11499-11504.
DOI URL |
[57] | LEPPERT J. Method for Producing Rare Earth Oxysulfide Powder. United States, C01F17/00, US6296824. 2001.10.02. |
[58] |
LIU Q, PAN H M, CHEN X P, et al. Gd2O2S:Tb scintillation ceramics fabricated from high sinterability nanopowders via hydrogen reduction. Optical Materials , 2019, 94:299-304.
DOI URL |
[59] |
LIU Q, WU F, CHEN X P, et al. Fabrication of Gd2O2S:Pr scintillation ceramics from water-bath synthesized nanopowders. Optical Materials , 2020, 104:109946.
DOI URL |
[60] | TERAZAWA S, NITTA H. Production Method of Rare Earth Oxysulfide, Ceramic Scintillator and Its Production Method, Scintillator Array, and Radiation Detector. United States, CO1F17/0093, US9896623. 2018.2.20. |
[61] |
LIANG J B, MA R Z, GENG F X, et al. OLn2(H)4SO4·nH2O (Ln=Pr to Tb; n~2): a new family of layered rare-earth hydroxides rigidly pillared by sulfate ions. Chemistry of Materials , 2010, 22(21):6001-6007.
DOI URL |
[62] |
WANG X J, MOLOKEEV M S, ZHU Q, et al. Controlled hydrothermal crystallization of anhydrous Ln2(OH)4SO4 (Ln= Eu-Lu,Y) as a new family of layered rare earth metal hydroxides. Chemistry-A European Journal , 2017, 23(63):16034-16043.
DOI URL |
[63] |
WANG X J, LI J G, MOLOKEEV M S, et al. Layered hydroxyl sulfate: controlled crystallization, structure analysis, and green derivation of multi-color luminescent (La,RE)2O2SO4 and (La,RE)2O2S phosphors (RE=Pr,Sm,Eu,Tb and Dy). Chemical Engineering Journal , 2016, 302:577-586.
DOI URL |
[64] |
WANG X J, LI J G, ZHU Q, et al. Facile and green synthesis of (La0.95Eu0.05) 2O2S red phosphors with sulfate-ion pillared layered hydroxides as a new type of precursor: controlled hydrothermal processing, phase evolution and photoluminescence. Science and Technology of Advanced Materials , 2013, 15(1):014204.
DOI URL |
[65] |
WANG X J, WANG X J, WANG Z H, et al. Photo/cathodoluminescence and stability of Gd2O2S:Tb,Pr green phosphor hexagons calcined from layered hydroxide sulfate. Journal of the American Ceramic Society , 2018, 101(12):5477-5486.
DOI URL |
[66] |
RIZKALLA E N, CHOPPIN G R. Hydration of lanthanides and actinides in solution. Journal of Alloys and Compounds , 1992, 180(1/2):325-336.
DOI URL |
[67] |
LIAN J B, LIU F, WANG X J, et al. Hydrothermal synthesis and photoluminescence properties of Gd2O2SO4:Eu3+ spherical phosphor. Powder Technology , 2014, 253:187-192.
DOI URL |
[68] |
LIAN J B, QIN H, LIANG P, et al. Controllable synthesis and photoluminescence properties of Gd2O2S:x%Pr3+ microspheres using an urea-ammonium sulfate (UAS) system. Ceramics International , 2015, 41(2):2990-2998.
DOI URL |
[69] |
SANG X T, LIAN J B, WU N C, et al. Synthesis, characterization and formation mechanism of Gd2O2S:Pr3+,Ce3+ phosphors by sealed triple-crucible method. Journal of Asian Ceramic Societies , 2020, 8(3):733-744.
DOI URL |
[70] |
WANG X J, MENG Q H, LI M T, et al. A low temperature approach for photo/cathodoluminescent Gd2O2S:Tb (GOS:Tb) nanophosphors. Journal of the American Ceramic Society , 2019, 102(6):3296-3306.
DOI URL |
[71] | BOLYASNIKOVA L, DEMIDENKO V, GOROKHOVA E, et al. Fluorescent Ceramic and Fabrication Method Thereof. United States, C09K11/17, US8025817. 2011.09.27. |
[72] |
GOROKHOVA E I, DEMIDENKO V A, MIKHRIN S B, et al. Luminescence and scintillation properties of Gd2O2S:Tb,Ce ceramics. IEEE Transactions on Nuclear Science , 2005, 52(6):3129-3132.
DOI URL |
[73] |
GOROKHOVA E I, DEMIDENKO V A, ERONKO S B, et al. Luminescence and scintillation properties of Gd2O2S:Eu optical ceramic. Journal of Optical Technology , 2010, 77(1):50-58.
DOI URL |
[74] | ZEITLER G, SCHREINEMACHER H, RONDA C. Hot Axial Pressing Method. United States, B29C47/76, US8221664. 2012.07.17. |
[75] |
ITO Y, YAMADA H, YOSHIDA M, et al. Hot isostatic pressed Gd2O2S:Pr,Ce,F translucent scintillator ceramics for X-ray computed tomography detectors. Japanese Journal of Applied Physics , 1988, 27(8A):L1371.
DOI URL |
[76] | LACOURSE B C, ZANDI M. Rare Earth Oxysulfide Scintillator and Methods for Producing Same. United states, C09K II/84. US8460578. 2013.06.11. |
[77] | WANG Y C, ZHANG Q J, LI Y J, et al. Process for the Preparation of Gadolinium Oxysulfide Scintillation Ceramics. United States, C09K11/77, US9771515. 2017.09.26. |
[78] | KOBUSCH M, ROSSNER W. Method for Producing a Scintillator Ceramic. United States, C04B33/32, US7303699. 2007.12.04. |
[79] |
WANG W, LI Y S, KOU H M, et al. Fabrication of Gd2O2S:Pr,Ce,F scintillation ceramics by pressureless sintering in nitrogen atmosphere. International Journal of Applied Ceramic Technology , 2015, 12:E249-E255.
DOI URL |
[80] |
BLASSE G. Scintillator materials. Chemistry of Materials , 1994, 6(9):1465-1475.
DOI URL |
[81] | 王伟. 面向医用CT 闪烁陶瓷 Gd2O2S: Pr,Ce的制备和性能表征. 上海: 华东理工大学博士学位论文, 2015. |
[82] |
WANG W, KOU H M, LIU S P, et al. Optical and scintillation properties of Gd2O2S:Pr,Ce,F ceramics fabricated by spark plasma sintering. Ceramics International , 2015, 41(2):2576-2581.
DOI URL |
[83] |
PAN H M, LIU Q, CHEN X P, et al. Fabrication and properties of Gd2O2S:Tb scintillation ceramics for the high-resolution neutron imaging. Optical Materials , 2020, 105:109909.
DOI URL |
[84] |
KANDARAKIS I, CAVOURAS D. Role of the activator in the performance of scintillators used in X-ray imaging. Applied Radiation and Isotopes , 2001, 54(5):821-831.
DOI URL |
[85] |
MICHAIL C, VALAIS I, SEFERIS I, et al. Measurement of the luminescence properties of Gd2O2S:Pr,Ce,F powder scintillators under X-ray radiation. Radiation measurements , 2014, 70:59-64.
DOI URL |
[86] | TAKAHASHI M, YUMURA T, YODA I, et al. Visualization of bubbles behavior in lead-bismuth eutectic by gamma-ray. International Conference on Nuclear Engineering , 2010, 49323:533-539. |
[87] | YAMADA H, MIURA I, DOI M, et al. Phosphor, and Radiation Detector and X-ray CT Unit Each Equipped Therewith. United States, C09K11/86, US6340436. 2002.01.22. |
[88] |
DA SILVA A A, CEBIM M A, DAVOLOS M R. Excitation mechanisms and effects of dopant concentration in Gd 2O2S:Tb3+ phosphor. Journal of Luminescence , 2008, 128(7):1165-1168.
DOI URL |
[89] | GRABMAIER C, BOEDINGER H, LEPPERT J. Phosphor with an Additive for Reducing Afterglow: United States, C09K11/08, US5560867. 1996.10.01. |
[90] |
NAKAMURA R, YAMADA N, ISHII M. Effects of halogen ions on the X-ray characteristics of Gd2O2S:Pr ceramic scintillator. Japanese Journal of Applied Physics , 1999, 38(12R):6923.
DOI URL |
[91] | ROSSNER W, OSTERTAG M, JERMANN F. Properties and applications of gadolinium oxysulfide based ceramic scintillators. Electrochemical Society Proceedings , 1999, 98(24):187-194. |
[92] |
ZHANG J W, LIU Y L, MAN S Q. Afterglow phenomenon in erbium and titanium codoped Gd2O2S phosphors. Journal of Luminescence , 2006, 117(2):141-146.
DOI URL |
[93] |
KHARIEKY A A, SARAEE K R E. Synthesis and characterization of radio and thermoluminescence properties of Sm doped Gd2O3, Gd2O2S and Gd2O2SO4 nanocrystalline phosphors. Journal of Luminescence , 2020, 220:116979.
DOI URL |
[94] |
KARDJILOV N, MANKE I, WORACEK R, et al. Advances in neutron imaging. Materials Today , 2018, 21(6):652-672.
DOI URL |
[95] | KARDJILOV N, DAWSON M, HILGER A, et al. A highly adaptive detector system for high resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2011, 651(1):95-99. |
[96] | ANDERSON I S, MCGREEVY R L, BILHRUX H Z. Neutron imaging and applications. Springer Science Business Media , 2009, 200(2209):47-63. |
[97] |
GALUNOV N Z, GRINYOV B V, KARAVAEVA N L, et al. Gd-bearing composite scintillators as the new thermal neutron detectors. IEEE Transactions on Nuclear Science , 2011, 58(1):339-346.
DOI URL |
[98] |
BACKLIN A, HOLMBERG N E, BACKSTROM G. Internal conversion study of 113Cd (n, γ)114Cd. Nuclear Physics , 1966, 80(1):154-176.
DOI URL |
[99] |
VAN EIJK C W E. Inorganic scintillators for thermal neutron detection. IEEE Transactions on Nuclear Science , 2012, 59(5):2242-2247.
DOI URL |
[100] | SUN R K S. Photo-energy calibration of 6LiI (Eu) crystals in mixed radiation fields using 24Na. Health Physics , 1987, 53(2):191-196. |
[101] |
DORENBOS P, DE HAAS J T M, VAN EIJK C. Non-proportionality in the scintillation response and the energy resolution obtainable with scintillation crystals. IEEE Transactions on Nuclear Science , 1995, 42(6):2190-2202.
DOI URL |
[102] |
KNITEL M J, DORENBOS P, COMBES C M, et al. Luminescence and storage properties of LiYSiO4: Ce. Journal of Luminescence , 1996, 69(5/6):325-334.
DOI URL |
[103] | VAN EIJK C W E, BESSIER A, DORENBOS P. Inorganic thermal-neutron scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers, Detectors and Associated Equipment , 2004, 529(1/2/3):260-267. |
[104] |
VAN EIJK C W E. Inorganic scintillators for thermal neutron detection. Radiation Measurements , 2004, 38(4/5/6):337-342.
DOI URL |
[105] | YASUDA R, KATAGIRI M, MATSUBAYASHI M. Influence of powder particle size and scintillator layer thickness on the performance of Gd2O2S:Tb scintillators for neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2012, 680:139-144. |
[106] |
TRTIK P, HOVIND J, GRUNZWEIG C, et al. Improving the spatial resolution of neutron imaging at Paul Scherrer Institute- the neutron microscope project. Physics Procedia , 2015, 69:169-176.
DOI URL |
[107] | TRTIK P, LEHMANN E H. Isotopically-enriched gadolinium-157 oxysulfide scintillator screens for the high-resolution neutron imaging. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2015, 788:67-70. |
[108] | ROSSNER W, GRABMAIER B C. Phosphors for X-ray detectors in computed tomography. Journal of Luminescence , 1991, 48:29-36. |
[109] |
ISHII M, KOBAYASHI M. Single crystals for radiation detectors. Progress in Crystal Growth and Characterization of Materials , 1992, 23:245-311.
DOI URL |
[110] | LECOQ P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,Spectrometers,Detectors and Associated Equipment , 2016, 809:130-139. |
[111] | BUZUG T M. Computed tomography: from photon statistics to modern cone-beam CT. Springer Science & Business Media , 2009, 36:3858. |
[112] | CHEN J Y, SHI Y, FENG T, et al. Scintillation ceramics and their application on medical X-CT. Journal of the Chinese Ceramic Society , 2004, 32(7):868-872. |
[113] |
WU Y T, REN G H, NIKL M, et al. CsI: Ti+, Yb2+: ultra-high light yield scintillator with reduced afterglow. CrystEngComm , 2014, 16(16):3312-3317.
DOI URL |
[114] | JIANG H C, VARTULI J, VESS C. Gemstone-the Ultimate Scintillator for Computed Tomography. GE White Paper CT-0376-1108-EN-US, 2008:1-8. |
[115] |
NAKAMURA R. Improvements in the X-ray characteristics of Gd2O2S:Pr ceramic scintillators. Journal of the American Ceramic Society , 1999, 82(9):2407-2410.
DOI URL |
[116] | https://www.toshiba-tmat.co.jp/en/product/sc_cera.htm. [2020-09-17] |
[117] | https://www.siemens-healthineers.com/computed-tomography/technologies-innovations/ufc-ultra-fast-ceramic. [2020-09-17] |
[118] | http://www.umich.edu/~ners580/ners-bioe_481/lectures/pdfs/2013-AAPM_Altman-CTdetectors.pdf. [2020-09-17] |
[119] | http://www.hitachi-metals.co.jp/e/products/elec/md/p05_14.html. |
[120] | http://www.irayam.com/pdf/4200007A0_Datasheet%20GOS%20Ceramic-CN.pdf. [2020-09-17] |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | LIU Yan, ZHANG Keying, LI Tianyu, ZHOU Bo, LIU Xuejian, HUANG Zhengren. Electric-field Assisted Joining Technology for the Ceramics Materials: Current Status and Development Trend [J]. Journal of Inorganic Materials, 2023, 38(2): 113-124. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||