Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 871-876.DOI: 10.15541/jim20200661
• RESEARCH ARTICLE • Previous Articles Next Articles
WANG Luping1(), LU Zhanhui1(), WEI Xin2, FANG Ming3, WANG Xiangke3()
Received:
2020-11-19
Revised:
2021-02-04
Published:
2021-08-20
Online:
2021-03-01
Contact:
LU Zhanhui, professor. E-mail: luzhanhui@ncepu.edu.cn; WANG Xiangke, professor. E-mail: xkwang@ncepu.edu.cn
About author:
WANG Luping (1996-), female, Master candidate. E-mail: lupingwang@ncepu.edu.cn
Supported by:
CLC Number:
WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction[J]. Journal of Inorganic Materials, 2021, 36(8): 871-876.
Time/min | 0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 |
---|---|---|---|---|---|---|---|---|---|---|
Con./(mg·L-1) | 38.66 | 34.52 | 31.39 | 29.10 | 27.00 | 25.15 | 23.16 | 21.24 | 19.40 | 18.29 |
Table 1 Experimental data of tetracycline concentration
Time/min | 0 | 15 | 30 | 45 | 60 | 75 | 90 | 105 | 120 | 135 |
---|---|---|---|---|---|---|---|---|---|---|
Con./(mg·L-1) | 38.66 | 34.52 | 31.39 | 29.10 | 27.00 | 25.15 | 23.16 | 21.24 | 19.40 | 18.29 |
Date size | Experimental data/(mg·L-1) | Forecast data /(mg·L-1) | MRE | ||
---|---|---|---|---|---|
4 | 27.00 | 25.15 | 26.93 | 24.89 | 0.005 |
5 | 25.15 | 23.16 | 25.13 | 23.42 | 0.006 |
6 | 23.16 | 21.24 | 23.50 | 21.98 | 0.025 |
7 | 21.24 | 19.40 | 21.46 | 19.84 | 0.017 |
8 | 19.40 | 18.29 | 19.56 | 17.97 | 0.025 |
Table 2 Different data size forecast comparison
Date size | Experimental data/(mg·L-1) | Forecast data /(mg·L-1) | MRE | ||
---|---|---|---|---|---|
4 | 27.00 | 25.15 | 26.93 | 24.89 | 0.005 |
5 | 25.15 | 23.16 | 25.13 | 23.42 | 0.006 |
6 | 23.16 | 21.24 | 23.50 | 21.98 | 0.025 |
7 | 21.24 | 19.40 | 21.46 | 19.84 | 0.017 |
8 | 19.40 | 18.29 | 19.56 | 17.97 | 0.025 |
Time /min | Con. /(mg·L-1) | DGM (1, 1) | DGM (1, 1, α) | EDGM (1, 1) | EDGM (1, 1, α) |
---|---|---|---|---|---|
60 | 27.00 | 26.60 | 26.93 | 26.60 | 26.93 |
75 | 25.15 | 24.41 | 25.07 | 24.57 | 24.89 |
90 | 23.16 | 22.40 | 23.41 | 22.52 | 22.98 |
105 | 21.24 | 20.55 | 21.92 | 20.75 | 21.20 |
120 | 19.40 | 18.86 | 20.56 | 19.05 | 19.56 |
135 | 18.29 | 17.31 | 19.32 | 17.54 | 18.03 |
Table 3 Predicted values of DGM(1, 1), DGM(1, 1, α), EDGM(1, 1), and EDGM(1, 1, α) models
Time /min | Con. /(mg·L-1) | DGM (1, 1) | DGM (1, 1, α) | EDGM (1, 1) | EDGM (1, 1, α) |
---|---|---|---|---|---|
60 | 27.00 | 26.60 | 26.93 | 26.60 | 26.93 |
75 | 25.15 | 24.41 | 25.07 | 24.57 | 24.89 |
90 | 23.16 | 22.40 | 23.41 | 22.52 | 22.98 |
105 | 21.24 | 20.55 | 21.92 | 20.75 | 21.20 |
120 | 19.40 | 18.86 | 20.56 | 19.05 | 19.56 |
135 | 18.29 | 17.31 | 19.32 | 17.54 | 18.03 |
Model | MRE | FD |
---|---|---|
DGM(1, 1) | 0.032 | 0.984 |
DGM(1, 1, α) | 0.028 | 0.985 |
EDGM(1, 1) | 0.025 | 0.988 |
EDGM(1, 1, α) | 0.008 | 0.995 |
Table 4 The MRE and FD of DGM(1, 1), DGM(1, 1, α), EDGM(1, 1), and EDGM(1, 1, α) models
Model | MRE | FD |
---|---|---|
DGM(1, 1) | 0.032 | 0.984 |
DGM(1, 1, α) | 0.028 | 0.985 |
EDGM(1, 1) | 0.025 | 0.988 |
EDGM(1, 1, α) | 0.008 | 0.995 |
[1] |
ZHANG S, LI B, WANG X, et al. Recent developments of two- dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chemical Engineering Journal , 2020, 390:124642.
DOI URL |
[2] |
HAO M, QIU M, YANG H, et al. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment , 2021, 760:143333.
DOI URL |
[3] |
ZHANG Y, ZHU M, ZHANG S, et al. Highly efficient removal of U(VI) by the photoreduction of SnO2/CdCO3/CdS nanocomposite under visible light irradiation. Applied Catalysis B: Environmental , 2020, 279:119390.
DOI URL |
[4] |
LIU X, PANG H, LIU X, et al. Orderly porous covalent organic frameworks-based materials: superior adsorbents for pollutants removal from aqueous solutions. The Innovation , 2021, 2:100076.
DOI URL |
[5] |
YAO L, YANG H, CHEN Z, et al. Bismuth oxychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere , 2021, 273:128576.
DOI URL |
[6] | WEI X, LU Z, WANG L, et al. Mechanism study of tetracycline high efficient photodegradation by Bi2WO6 nanosheets under visible light irradiation. Journal of Inorganic Materials , 2019, 35(3):324-328. |
[7] |
ZHU M, CAI Y, LIU S, et al. K2Ti6O13 hybridized graphene oxide: effective enhancement in photodegradation of Rh B and photoreduction of U(VI). Environmental Pollution , 2019, 248:448-455.
DOI URL |
[8] | WHITE J A, VELASCO S. A simple semiempirical method for predicting the temperature-entropy saturation curve of pure fluids. Industrial and Engineering Chemistry Research , 2018, 58(2):1308-1403. |
[9] |
NAGUIB I A, ABDALLAH F F. Ultraviolet cutoff area and predictive ability of partial least squares regression method: a pharmaceutical case study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy , 2020, 231:118116.
DOI URL |
[10] |
ZHAI M. A new method for short-term load forecasting based on fractal interpretation and wavelet analysis. International Journal of Electrical Power & Energy Systems , 2015, 69:241-245.
DOI URL |
[11] |
CHENG M, SHI G, XIANG M. On the improvement of the parameter estimation of the grey model GM(1, 1) and model application. Communications in Statistics-Simulation and Computation , 2020, 49(5):1367-1384.
DOI URL |
[12] |
DENG J. Control problems of grey systems. Systems & Control Letters , 1982, 1(5):288-294.
DOI URL |
[13] |
ZHOU D, AL-DURRA A, ZHANG K, et al. A robust prognostic indicator for renewable energy technologies: a novel error correction grey prediction model. IEEE Transactions on Industrial Electronics , 2019, 66(12):9312-9325.
DOI URL |
[14] | CHEN Z, CAI Y. GM(1, 1) Residual error correction model applied to building deformation prediction. Geometrics & Spatial Information Technology , 2010, 33(3):198-200. |
[15] |
XU N, DANG Y, GONG Y. Novel grey prediction model with nonlinear optimized time response method for forecasting of electricity consumption in China. Energy , 2017, 118:473-480.
DOI URL |
[16] |
MA X, LIU Z, WANG Y. Application of a novel nonlinear multivariate grey Bernoulli model to predict the tourist income of China. Journal of Computational and Applied Mathematics , 2018, 347:84-94.
DOI URL |
[17] |
DING S, XU N, YE J, et al. Estimating Chinese energy-related CO2 emissions by employing a novel discrete grey prediction model. Journal of Cleaner Production , 2020, 259:120793.
DOI URL |
[18] | DAI J, LIU H, SUN Y, et al. An optimization method of multi- variable MGM (1, m) prediction model's background value. Journal of Grey System , 2018, 30(1):221-238. |
[19] |
WANG Y, JIE L. Improvement and application of GM(1, 1) model based on multivariable dynamic optimization. Journal of Systems Engineering and Electronics , 2020, 31(3):593-601.
DOI URL |
[20] | XIE N, LIU S. Discrete GM (1, 1) and mechanism of grey forecasting model. Systems Engineering-Theory & Practice , 2005, 25(1):93-99. |
[21] |
WANG Q, SONG X. Forecasting China's oil consumption: a comparison of novel nonlinear-dynamic grey model (GM), linear GM, nonlinear GM and metabolism GM. Energy , 2019, 183:160-171.
DOI URL |
[22] | JIANG J, ZHANG Y, LIU C, et al. An improved nonhomogeneous discrete grey model and its application. Mathematical Problems in Engineering , 2020, 2020(3):1-8. |
[23] |
XIE N, ZHU C, ZHENG J. Expansion modelling of discrete grey model based on multi-factor information aggregation. Journal of Systems Engineering and Electronics , 2014, 25(5):833-839.
DOI URL |
[24] | WU W Z, JIANG J, LI Q. A novel discrete grey model and its application. Mathematical Problems in Engineering , 2019, 2019:9623878. |
[25] |
SU X, HOU L, XIA L, et al. Citric acid-modulated in situ synthesis of 3D hierarchical Bi@BiOCl microsphere photocatalysts with enhanced photocatalytic performance. Journal of Materials Science , 2019, 54:4559-4572.
DOI URL |
[1] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[2] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[3] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[4] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[5] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[6] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[7] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[8] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[9] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[10] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[11] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[12] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[13] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[14] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[15] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||