Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 807-819.DOI: 10.15541/jim20200652
Special Issue: 【虚拟专辑】LED发光材料
• REVIEW • Previous Articles Next Articles
PENG Xinglin1,2(), LI Shuxing3(), LIU Zehua4, YAO Xiumin1,2, XIE Rongjun3, HUANG Zhengren1,2,4, LIU Xuejian1,2()
Received:
2020-11-12
Revised:
2020-12-24
Published:
2021-08-20
Online:
2021-03-01
Contact:
LIU Xuejian, professor. E-mail:xjliu@mail.sic.ac.cn; LI Shuxing, lecturer. E-mail: lishuxing@xmu.edu.cn
About author:
PENG Xinglin(1995-), male, PhD candidate. E-mail: pengxinglin@student.sic.ac.cn
Supported by:
CLC Number:
PENG Xinglin, LI Shuxing, LIU Zehua, YAO Xiumin, XIE Rongjun, HUANG Zhengren, LIU Xuejian. Phosphor Ceramics for High-power Solid-state Lighting[J]. Journal of Inorganic Materials, 2021, 36(8): 807-819.
Fig. 2 Al2O3-YAG:Ce composite phosphor ceramics[11] (a) SEM image of the Al2O3-YAG:Ce composite ceramics; (b) Laser irradiation spot temperature of the ceramics varies with different Al2O3 contents; (c) Temperature distribution curves; (d) Thermal conductivity as a function of Al2O3 content; (e) Thermal conductivity as a function of the temperature; (f) Temperature-dependent integrated emission intensity of the composite ceramics Colorful figures are available on website
Doped ions | Ion radius/nm | Occupied lattice | Ref. |
---|---|---|---|
Y3+ | 0.1019 | A | [ |
Gd3+ | 0.1053 | A | [ |
Tb3+ | 0.104 | A | [ |
Lu3+ | 0.0977 | A | [ |
Mg2+ | 0.089 | A | [ |
Sc3+ | 0.087 | A | [ |
Al3+ | 0.0535 | B | [ |
Sc3+ | 0.0745 | B | [ |
Mg2+ | 0.072 | B | [ |
Ga3+ | 0.062 | B | [ |
Al3+ | 0.039 | C | [ |
Si4+ | 0.026 | C | [ |
Table 1 Doping ions and ionic radii of garnet phosphor ceramics at different lattice positions
Doped ions | Ion radius/nm | Occupied lattice | Ref. |
---|---|---|---|
Y3+ | 0.1019 | A | [ |
Gd3+ | 0.1053 | A | [ |
Tb3+ | 0.104 | A | [ |
Lu3+ | 0.0977 | A | [ |
Mg2+ | 0.089 | A | [ |
Sc3+ | 0.087 | A | [ |
Al3+ | 0.0535 | B | [ |
Sc3+ | 0.0745 | B | [ |
Mg2+ | 0.072 | B | [ |
Ga3+ | 0.062 | B | [ |
Al3+ | 0.039 | C | [ |
Si4+ | 0.026 | C | [ |
Fig. 3 YMASG:Ce phosphor ceramics[44] (a) PLE spectra; (b) PL spectra; (c) Peak wavelength and FWHM; (d) Chromaticity color coordinates colorful figures are available on website
Fig. 4 PL and PLE spectra of YAG:Ce3+/Pr3+/Cr3+phosphor ceramics[29] (a) YAG:Ce; (b) YAG:Pr; (c) YAG:Cr; (d) YAG:Ce,Pr; (e) YAG:Ce,Cr; (f) YAG:Ce,Pr,Cr
Methods | Composition | Emission peak position/nm | CCT/K | CRI | Ref. |
---|---|---|---|---|---|
Adjust matrix chemical composition | GdYAG:Ce | 525-554 | 2968-4299 | 64.8 | [ |
GdYAG:Ce | 528-550 | 3688-4782 | 67.1 | [ | |
Al2O3-GdYAG:Ce | 550* | 5010 | 71.4 | [ | |
MgAl2O4-GdYAG:Ce | 550* | 4543 | 70 | [ | |
TbAG:Ce | 556-564 | 4000-4900 | - | [ | |
Al2O3-TbAG:Ce | 555 | 3580 | 63 | [ | |
TGAG:Ce | 550-570 | 3681 | 74.7 | [ | |
GAGG:Ce | 568-574 | 3000 | 78.9 | [ | |
GAGG:Ce | 570 | 2800 | 58.7 | [ | |
YMASG:Ce | 537-577 | 4384 | 81 | [ | |
YMASG:Ce | 533-598 | 2018-4516 | - | [ | |
Al2O3-YMASG:Ce | 552-610 | 4860 | 82.5 | [ | |
Adjust the luminescencecenter | YAG:Ce3+/Pr3+ | 535, 564, 609, 637 | - | 66.9 | [ |
YAG:Ce3+/Cr3+ | 534, 677, 688, etc. | - | 72 | [ | |
YAG:Ce3+/Cr3+ | 530, 690, 705 | 4329 | - | [ | |
YAG:Ce3+/Pr3+/Cr3+ | 530, 609, 689, etc. | - | 78 | [ | |
YAG:Ce3+/Mn2+ | 520-590 | 3870-5196 | 82.5 | [ | |
YAG:Ce3+/Dy3+ | 496, 582, etc. | 5609 | - | [ | |
LuAG:Dy3+ | 482, 583, 675,etc. | 3485-3619 | - | [ | |
Composite red fluorescent material | LuAG:Ce/(Sr,Ca)AlSiN3:Eu | 515, 640 | 4450 | 94 | [ |
LuAG:Ce/Eu-doped nitride | 565-587 | 5800 | 89.4 | [ | |
YAG:Ce/Sr2Si5N8:Eu | 610* | 3952 | 82 | [ | |
Al2O3-YAG:Ce/Red QD | 552, 634 | 3161-6035 | 80 | [ |
Table 2 Summary of three methods for improving CRI and reducing CCT of garnet type phosphor ceramics
Methods | Composition | Emission peak position/nm | CCT/K | CRI | Ref. |
---|---|---|---|---|---|
Adjust matrix chemical composition | GdYAG:Ce | 525-554 | 2968-4299 | 64.8 | [ |
GdYAG:Ce | 528-550 | 3688-4782 | 67.1 | [ | |
Al2O3-GdYAG:Ce | 550* | 5010 | 71.4 | [ | |
MgAl2O4-GdYAG:Ce | 550* | 4543 | 70 | [ | |
TbAG:Ce | 556-564 | 4000-4900 | - | [ | |
Al2O3-TbAG:Ce | 555 | 3580 | 63 | [ | |
TGAG:Ce | 550-570 | 3681 | 74.7 | [ | |
GAGG:Ce | 568-574 | 3000 | 78.9 | [ | |
GAGG:Ce | 570 | 2800 | 58.7 | [ | |
YMASG:Ce | 537-577 | 4384 | 81 | [ | |
YMASG:Ce | 533-598 | 2018-4516 | - | [ | |
Al2O3-YMASG:Ce | 552-610 | 4860 | 82.5 | [ | |
Adjust the luminescencecenter | YAG:Ce3+/Pr3+ | 535, 564, 609, 637 | - | 66.9 | [ |
YAG:Ce3+/Cr3+ | 534, 677, 688, etc. | - | 72 | [ | |
YAG:Ce3+/Cr3+ | 530, 690, 705 | 4329 | - | [ | |
YAG:Ce3+/Pr3+/Cr3+ | 530, 609, 689, etc. | - | 78 | [ | |
YAG:Ce3+/Mn2+ | 520-590 | 3870-5196 | 82.5 | [ | |
YAG:Ce3+/Dy3+ | 496, 582, etc. | 5609 | - | [ | |
LuAG:Dy3+ | 482, 583, 675,etc. | 3485-3619 | - | [ | |
Composite red fluorescent material | LuAG:Ce/(Sr,Ca)AlSiN3:Eu | 515, 640 | 4450 | 94 | [ |
LuAG:Ce/Eu-doped nitride | 565-587 | 5800 | 89.4 | [ | |
YAG:Ce/Sr2Si5N8:Eu | 610* | 3952 | 82 | [ | |
Al2O3-YAG:Ce/Red QD | 552, 634 | 3161-6035 | 80 | [ |
Fig. 5 CaAlSiN3:Eu2+ phosphor ceramics[6, 58] (a) Single CaAlSiN3: Eu2+ grain CL spectral line scan; (b) CL spectra; (c) Crystal structure transition; (d) Core-shell structure schematic diagram; (e) Quantum efficiency of samples; (f) Thermal stability of samples with different Si 3N4 and SiO2 contents; (g) Influence of incident power density on luminous flux; (h) Luminous efficiency of samples Colorful figures are available on website
[1] |
SCHUBERT E F, KIM J K. Solid-state light sources getting smart. Science , 2005, 308(5726):1274-1278.
DOI URL |
[2] | WIERER J J, TSAO J Y, SIZOV D S. Comparison between blue lasers and light-emitting diodes for future solid-state lighting. Laser & Photonics Reviews , 2013, 7(6):963-993. |
[3] | LI S, WANG L, HIROSAKI N, et al. Color conversion materials for high-brightness laser-driven solid-state lighting. Laser & Photonics Reviews , 2018, 12(12):1800173 |
[4] |
FAN F, TURKDOGAN S, LIU Z, et al. A monolithic white laser. Nat. Nanotechnol. , 2015, 10(9):796-803.
DOI URL |
[5] |
YAO Q, HU P, SUN P, et al. YAG:Ce3+ transparent ceramic phosphors brighten the next-generation laser-driven lighting. Adv. Mater. , 2020, 32(19):1907888.
DOI URL |
[6] |
LI S X, TANG D M, TIAN Z F, et al. New insights into the microstructure of translucent CaAlSiN3:Eu2+ phosphor ceramics for solid-state laser lighting. Journal of Materials Chemistry C , 2017, 5(5):1042-1051.
DOI URL |
[7] | LENEF A, KELSO J, ZHENG Y, et al. Radiance limits of ceramic phosphors under high excitation fluxes. Proceedings of SPIE , 2013, 8841:884107. |
[8] |
XU Y R, LI S X, ZHENG P, et al. A search for extra-high brightness laser-driven color converters by investigating thermally-induced luminance saturation. Journal of Materials Chemistry C , 2019, 7(37):11449-11456.
DOI URL |
[9] |
COZZAN C, LHEUREUX G, O'DEA N, et al. Stable, heat-conducting phosphor composites for high-power laser lighting. ACS Appl. Mater. Interfaces , 2018, 10(6):5673-5681.
DOI URL |
[10] |
LI S, ZHU Q, TANG D, et al. Al2O3-YAG:Ce composite phosphor ceramic: a thermally robust and efficient color converter for solid state laser lighting. Journal of Materials Chemistry C , 2016, 4(37):8648-8654.
DOI URL |
[11] |
WANG J C, TANG X Y, ZHENG P, et al. Thermally self-managing YAG:Ce-Al2O3 color converters enabling high-brightness laser-driven solid state lighting in a transmissive configuration. Journal of Materials Chemistry C , 2019, 7(13):3901-3908.
DOI URL |
[12] |
MA X G, LI X Y, LI J Q, et al. Pressureless glass crystallization of transparent yttrium aluminum garnet-based nanoceramics. Nature Communications , 2018, 9(1):1175.
DOI URL |
[13] |
PARK J, KIM J, KWON H. Phosphor-aluminum composite for energy recycling with high-power white lighting. Advanced Optical Materials , 2017, 5(19):1700347.
DOI URL |
[14] | ZHENG P, LI S, WEI R, et al. Unique design strategy for laser-driven color converters enabling superhigh-luminance and high-directionality white light. Laser & Photonics Reviews , 2019, 13(10):14930-14940. |
[15] |
ZHANG L, SUN B, GU L, et al. Enhanced light extraction of single-surface textured YAG:Ce transparent ceramics for high power white LEDs. Applied Surface Science , 2018, 455:425-432.
DOI URL |
[16] |
ZHANG Y, HU S, WANG Z, et al. Pore-existing Lu3Al5O12:Ce ceramic phosphor: an efficient green color converter for laser light source. Journal of Luminescence , 2018, 197:331-334.
DOI URL |
[17] |
HUANG P, ZHOU B, ZHENG Q, et al. Nano wave plates structuring and index matching in transparent hydroxyapatite-YAG: Ce composite ceramics for high luminous efficiency white light-emitting diodes. Advanced Materials , 2019, 32(1):1905951.
DOI URL |
[18] |
LIU X, QIAN X, ZHENG P, et al. Preparation and optical properties of MgAl2O4-Ce:GdYAG composite ceramic phosphors for white LEDs. Journal of the European Ceramic Society , 2019, 39(15):4965-4971.
DOI URL |
[19] |
SUN B H, ZHANG L, HUANG G C, et al. Surface texture induced light extraction of novel Ce:YAG ceramic tubes for outdoor lighting. Journal of Materials Science , 2019, 54(1):159-171.
DOI URL |
[20] |
WAGNER A, RATZKER B, KALABUKHOV S, et al. Enhanced external luminescence quantum efficiency of ceramic phosphors by surface roughening. Journal of Luminescence , 2019, 213:454-458.
DOI URL |
[21] |
PARK H K, OH J R, DO Y R. 2D SiNx photonic crystal coated Y3Al5O12:Ce3+ ceramic plate phosphor for high-power white light-emitting diodes. Optics Express , 2011, 19(25):25593-25601.
DOI URL |
[22] |
PARK H K, YOON S W, CHOI D Y, et al. Fabrication of wafer-scale TiO2 nanobowl arrays via a scooping transfer of polystyrene nanospheres and atomic layer deposition for their application in photonic crystals. Journal of Materials Chemistry C , 2013, 1(9):1732-1738.
DOI URL |
[23] |
TANG Y, ZHOU S, CHEN C, et al. Composite phase ceramic phosphor of Al2O3-Ce:YAG for high efficiency light emitting. Opt. Express , 2015, 23(14):17923-17928.
DOI URL |
[24] |
HU S, ZHANG Y, WANG Z, et al. Phase composition, microstructure and luminescent property evolutions in “light-scattering enhanced” Al 2O3-Y3Al5O12: Ce3+ ceramic phosphors. Journal of the European Ceramic Society , 2018, 38(9):3268-3278.
DOI URL |
[25] |
CHEN J, TANG Y, YI X, et al. Fabrication of (Tb,Gd)3Al5O12:Ce3+ phosphor ceramics for warm white light-emitting diodes application. Optical Materials Express , 2019, 9(8):3333-3341.
DOI URL |
[26] |
LIU S, SUN P, LIU Y, et al. Warm white light with a high color rendering index from a single Gd3Al4GaO12:Ce3+ transparent ceramic for high-power LEDs and LDs. ACS Appl. Mater. Interfaces , 2018, 11(2):2130-2139.
DOI URL |
[27] |
TIAN Y, TANG Y, YI X, et al. The analyses of structure and luminescence in (MgyY3-y)(Al5-ySiy)O12 and Y3(MgxAl5-2xSix)O12 ceramic phosphors. Journal of Alloys and Compounds , 2020, 813:152236.
DOI URL |
[28] |
AO G, TANG Y, YI X, et al. Red emission generation in Ce3+/Mn2+ co-doping Y3Al5O12 phosphor ceramics for warm white lighting emitting diodes. Journal of Alloys and Compounds , 2019, 798:695-699.
DOI URL |
[29] |
FENG S, QIN H, WU G, et al. Spectrum regulation of YAG:Ce transparent ceramics with Pr, Cr doping for white light emitting diodes application. Journal of the European Ceramic Society , 2017, 37(10):3403-3409.
DOI URL |
[30] |
TANG Y, ZHOU S, YI X, et al. The characterization of Ce/Pr-doped YAG phosphor ceramic for the white LEDs. Journal of Alloys and Compounds , 2018, 745:84-89.
DOI URL |
[31] |
TANG Y R, ZHOU S M, YI X Z, et al. The Cr-doping effect on white light emitting properties of Ce:YAG phosphor ceramics. Journal of the American Ceramic Society , 2017, 100(6):2590-2595.
DOI URL |
[32] |
BICANIC K T, LI X Y, SABATINI R P, et al. Design of phosphor white light systems for high-power applications. ACS Photonics , 2016, 3(12):2243-2248.
DOI URL |
[33] |
PARK H K, OH J H, KANG H, et al. Hybrid 2D photonic crystal- assisted Lu3Al5O12:Ce ceramic-plate phosphor and free-standing red film phosphor for white LEDs with high color-rendering index. ACS Appl. Mater. Interfaces , 2015, 7(8):4549-4559.
DOI URL |
[34] |
PRICHA I, ROSSNER W, MOOS R, et al. Layered ceramic phosphors based on CaAlSiN3:Eu and YAG:Ce for white light- emitting diodes. Journal of the American Ceramic Society , 2016, 99(1):211-217.
DOI URL |
[35] |
SONG Y H, HAN G S, JI E K, et al. The novel design of a remote phosphor ceramic plate for white light generation in high power LEDs. Journal of Materials Chemistry C , 2015, 3(24):6148-6152.
DOI URL |
[36] |
LIU X, CHEN B, TU B, et al. Variation of structure and photoluminescence properties of Ce3+ doped MgAlON transparent ceramics with different doping content. Materials , 2017, 10(7):792.
DOI URL |
[37] |
JOSHI B, LEE S W. Luminescence properties of Eu2+, Gd3+ and Pr3+ doped translucent Sialon phosphors. Journal of Rare Earths , 2015, 33(11):1142-1147.
DOI URL |
[38] |
NISHIURA S, TANABE S, FUJIOKA K, et al. Properties of transparent Ce:YAG ceramic phosphors for white LED. Optical Materials , 2011, 33(5):688-691.
DOI URL |
[39] |
SONG Y H, JI E K, JEONG B W, et al. High power laser-driven ceramic phosphor plate for outstanding efficient white light conversion in application of automotive lighting. Sci. Rep. , 2016, 6:31206.
DOI URL |
[40] |
HU C, SHI Y, FENG X Q, et al. YAG:Ce/(Gd,Y)AG:Ce dual- layered composite structure ceramic phosphors designed for bright white light-emitting diodes with various CCT. Optics Express , 2015, 23(14):18243-18255.
DOI URL |
[41] |
ANGLE J P, WANG Z J, DAMES C, et al. Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites. Journal of the American Ceramic Society , 2013, 96(9):2935-2942.
DOI URL |
[42] |
GU C, WANG X J, XIA C, et al. A new CaF2-YAG: Ce composite phosphor ceramic for high-power and high-color-rendering WLEDs. Journal of Materials Chemistry C , 2019, 7(28):8569-8574.
DOI URL |
[43] |
LIU Y, HU S, ZHANG Y, et al. Crystal structure evolution and luminescence property of Ce3+-doped Y2O3-Al2O3-Sc2O3 ternary ceramics. Journal of the European Ceramic Society , 2020, 40(3):840-846.
DOI URL |
[44] |
DU Q P, FENG S W, QIN H M, et al. Massive red-shifting of Ce3+ emission by Mg2+ and Si4+ doping of YAG:Ce transparent ceramic phosphors. Journal of Materials Chemistry C , 2018, 6(45):12200-12205.
DOI URL |
[45] |
BI J, LI JG, ZHU Q, et al. Yellow-emitting (Tb1-xCex)3Al5O12 phosphor powder and ceramic (0≤x≤0.05): phase evolution, photoluminescence, and the process of energy transfer. Ceramics International , 2017, 43(11):8163-8170.
DOI URL |
[46] |
JI EK, SONG YH, BAK S H, et al. The design of a ceramic phosphor plate with functional materials for application in high power LEDs. Journal of Materials Chemistry C , 2015, 3(48):12390-12393.
DOI URL |
[47] |
LIU Y, LIU S, SUN P, et al. Transparent ceramics enabling high luminous flux and efficacy for the next-generation high-power LED light. ACS Appl. Mater. Interfaces , 2019, 11(24):21697-21701.
DOI URL |
[48] |
KRASNOSHCHOKA A, THORSETH A, DAM-HANSEN C, et al. Investigation of saturation effects in ceramic phosphors for laser lighting. Materials , 2017, 10(12):1407.
DOI URL |
[49] |
XU J, HU B F, XU C, et al. A unique color converter geometry for laser-driven white lighting. Optical Materials , 2018, 86:286-290.
DOI URL |
[50] |
YI X, ZHOU S, CHEN C, et al. Fabrication of Ce:YAG, Ce,Cr:YAG and Ce:YAG/Ce,Cr:YAG dual-layered composite phosphor ceramics for the application of white LEDs. Ceramics International , 2014, 40(5):7043-7047.
DOI URL |
[51] |
LIU X, ZHOU H, HU Z, et al. Transparent Ce:GdYAG ceramic color converters for high-brightness white LEDs and LDs. Optical Materials , 2019, 88:97-102.
DOI URL |
[52] |
LIU X, QIAN X, HU Z, et al. Al2O3-Ce:GdYAG composite ceramic phosphors for high-power white light-emitting-diode applications. Journal of the European Ceramic Society , 2019, 39(6):2149-2154.
DOI URL |
[53] |
CHEN J, TANG Y, YI X, et al. Al2O3-Ce:Tb3Al5O12 composite ceramic phosphors for high efficiency warm white light illumination. Optical Materials , 2019, 97:109384.
DOI URL |
[54] |
TIAN Y, TANG Y, YI X, et al. Study of composite Al2O3-Ce: Y3Mg1.8Al1.4Si1.8O12 ceramic phosphors. Opt. Lett. , 2019, 44(19):4845-4848.
DOI URL |
[55] |
ZHENG R, LUO D, YUAN Y, et al. Dy3+/Ce3+ codoped YAG transparent ceramics for single-composition tunable white-light phosphor. Journal of the American Ceramic Society , 2015, 98(10):3231-3235.
DOI URL |
[56] |
HU S, LU C H, QIN X P, et al. Color tuning of Lu3Al5O12:Dy3+ ceramic-based white light-emitting phosphorsvia Yb incorporation. Journal of the European Ceramic Society , 2017, 37(1):229-237.
DOI URL |
[57] |
WANG L, XIE R J, SUEHIRO T, et al. Down-conversion nitride materials for solid state lighting: recent advances and perspectives. Chemical Reviews , 2018, 118(4):1951-2009.
DOI URL |
[58] |
LI S X, ZHU Q Q, WANG L, et al. CaAlSiN3:Eu2+ translucent ceramic: a promising robust and efficient red color converter for solid state laser displays and lighting. Journal of Materials Chemistry C , 2016, 4(35):8197-8205.
DOI URL |
[59] |
JOSHI B, HOON J S, KSHETRI Y K, et al. Transparent Sialon phosphor ceramic plates for white light emitting diodes applications. Ceramics International , 2018, 44(18):23116-23124.
DOI URL |
[60] |
JOSHI B, KSHETRI Y K, GYAWALI G, et al. Transparent Mg-α/β-Sialon:Eu2+ ceramics as a yellow phosphor for pc-WLED. Journal of Alloys and Compounds , 2015, 631:38-45.
DOI URL |
[61] |
LI K, WANG H, LIU X, et al. Mn2+ activated MgAlON transparent ceramic: a new green-emitting transparent ceramic phosphor for high-power white LED. Journal of the European Ceramic Society , 2017, 37(13):4229-4233.
DOI URL |
[62] | PRICHA I, ROSSNER W, MOOS R. Pressureless sintering of luminescent CaAlSiN3:Eu ceramics. Journal of Ceramic Science and Technology , 2015, 6(1):63-67. |
[63] |
RAUKAS M, KELSO J, ZHENG Y, et al. Ceramic phosphors for light conversion in LEDs. Ecs Journal of Solid State Science and Technology , 2013, 2(2):R3168-R3176.
DOI URL |
[64] | WIEG A T, PENILLA E H, HARDIN C L, et al. Broadband white light emission from Ce:AlN ceramics: high thermal conductivity down-converters for LED and laser-driven solid state lighting. Appl. Materials , 2016, 4(12):126105. |
[65] |
SCHNICK W. Shine a light with nitrides. Physica Status Solidi (RRL)-Rapid Research Letters , 2009, 3(7/8):A113-A114.
DOI URL |
[66] |
XIE R J, HIROSAKI N, SUEHIRO T, et al. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light- emitting diodes. Chemistry of Materials , 2006, 18(23):5578-5583.
DOI URL |
[67] |
LI S X, WANG L, TANG D M, et al. Achieving high quantum efficiency narrow-band β-Sialon:Eu2+phosphors for high-brightness LCD backlights by reducing the Eu3+ luminescence killer. Chemistry of Materials , 2018, 30(2):494-505.
DOI URL |
[68] |
XIE R J, HIROSAKI N, MITOMO M, et al. Wavelength-tunable and thermally stable Li-α-sialon:Eu2+ oxynitride phosphors for white light-emitting diodes. Applied Physics Letters , 2006, 89(24):241103.
DOI URL |
[69] |
ZHANG Y, LIU Y, YANG L, et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors. Journal of Luminescence , 2020, 220:117016.
DOI URL |
[70] |
ARREDONDO A, DESIRENA H, MORENO I, et al. Dual color tuning in Ce3+-doped oxyfluoride ceramic phosphor plate for white LED application. Journal of the American Ceramic Society , 2019, 102(3):1425-1434.
DOI URL |
[71] |
HU S, LIU Y, ZHANG Y, et al. 3D printed ceramic phosphor and the photoluminescence property under blue laser excitation. Journal of the European Ceramic Society , 2019, 39(8):2731-2738.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||