Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 471-478.DOI: 10.15541/jim20200584
Special Issue: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
WANG Tianyue1,2(), WANG Mengying1(), HUANG Qingjiao3, YANG Jiaming3, WANG Shunhua2, DIAO Xungang1()
Received:
2020-10-14
Revised:
2020-11-25
Published:
2021-05-20
Online:
2021-04-19
Contact:
WANG Mengying, PhD. E-mail: mercy@buaa.edu.cn; DIAO Xungang, professor. E-mail: diaoxg@buaa.edu.cn
About author:
WANG Tianyue(1994-), male, master. E-mail:Oceanwty@163.com
Supported by:
CLC Number:
WANG Tianyue, WANG Mengying, HUANG Qingjiao, YANG Jiaming, WANG Shunhua, DIAO Xungang. Preparation of Lithium Titanate Thin Film for Electrochromic Smart Window by Sol-Gel Spin Coating Method[J]. Journal of Inorganic Materials, 2021, 36(5): 471-478.
Target | Power source | Pressure/ Pa | Atmosphere (Ar : O2) | Power/ W | Time/ min |
---|---|---|---|---|---|
LiNbO3 | RF | 0.8 | 95 : 5 | 300 | 120 |
Ni | DC | 1.5 | 94 : 6 | 200 | 25 |
ITO | DC | 0.3 | 78.4 : 21.6 | 200 | 20 |
Table 1 Preparation parameters of all-solid-state inorganic devices Glass/FTO/Li4Ti5O12/LiNbO3/NiOx/ITO
Target | Power source | Pressure/ Pa | Atmosphere (Ar : O2) | Power/ W | Time/ min |
---|---|---|---|---|---|
LiNbO3 | RF | 0.8 | 95 : 5 | 300 | 120 |
Ni | DC | 1.5 | 94 : 6 | 200 | 25 |
ITO | DC | 0.3 | 78.4 : 21.6 | 200 | 20 |
Sample | Lattice constant/nm | Interplanar spacing/nm | Average crystallite size/nm |
---|---|---|---|
LTO-1 | 0.834463 | 0.48055 | 14.9 |
LTO-2 | 0.834586 | 0.48055 | 16.2 |
LTO-3 | 0.834554 | 0.48068 | 15.8 |
LTO-4 | 0.834637 | 0.48055 | 18.5 |
LTO-5 | 0.834687 | 0.48055 | 19.4 |
Table 2 Lattice constant, interplanar spacing and grain size of Li4Ti5O12 thin films with different thicknesses
Sample | Lattice constant/nm | Interplanar spacing/nm | Average crystallite size/nm |
---|---|---|---|
LTO-1 | 0.834463 | 0.48055 | 14.9 |
LTO-2 | 0.834586 | 0.48055 | 16.2 |
LTO-3 | 0.834554 | 0.48068 | 15.8 |
LTO-4 | 0.834637 | 0.48055 | 18.5 |
LTO-5 | 0.834687 | 0.48055 | 19.4 |
Sample | Tb/% | Tc/% | ΔT/% | tc/s | tb/s |
---|---|---|---|---|---|
LTO-1 | 91.84 | 72.7 | 19.14 | 26.3 | 3.6 |
LTO-2 | 90.07 | 64.35 | 25.72 | 20.5 | 4.5 |
LTO-3 | 88.04 | 37.28 | 50.76 | 19.1 | 8.9 |
LTO-4 | 87.4 | 34.35 | 53.05 | 21.8 | 7.6 |
LTO-5 | 75.12 | 26.19 | 48.93 | 28.6 | 12.0 |
Table 3 Transmittance and response time of Li4Ti5O12 thin films with different thicknesses
Sample | Tb/% | Tc/% | ΔT/% | tc/s | tb/s |
---|---|---|---|---|---|
LTO-1 | 91.84 | 72.7 | 19.14 | 26.3 | 3.6 |
LTO-2 | 90.07 | 64.35 | 25.72 | 20.5 | 4.5 |
LTO-3 | 88.04 | 37.28 | 50.76 | 19.1 | 8.9 |
LTO-4 | 87.4 | 34.35 | 53.05 | 21.8 | 7.6 |
LTO-5 | 75.12 | 26.19 | 48.93 | 28.6 | 12.0 |
Fig. 4 CV curves under limited voltage condition (a), in-situ transmittance spectra (b) and CV curves under reasonable voltage condition (c), and in-situ transmittance spectra (d) of LTO-3 at various scan rates
Fig. 8 Electrochromic performance of all-solid-state inorganic Glass/FTO/Li4Ti5O12/LiNbO3/NiOx/ITO devices (a) In-situ transmittance spectrum; (b) STEP curves; (c) Transmittance spectrum in the wavelength of 400-1100 nm; (d) Li4Ti5O12 colored and bleached photographs
[1] |
DEB S K. A novel electrophotographic system. Applied Optics, 1969,8(Suppl 1):192-195.
DOI URL |
[2] |
LAMPERT C M. Electrochromic materials and devices energy- efficient windows. Solar Energy Materials, 1984,11(1/2):1-27.
DOI URL |
[3] |
BAETENS R, JELLE B P, GUSTAVSEN A. Properties, requirements and possibilities of smart windows for dynamic daylight and solar energy control in buildings: a state-of-the-art review. Solar Energy Materials and Solar Cells, 2010,94(2):87-105.
DOI URL |
[4] |
CAI G, WANG J, LEE P S. Next-generation multifunctional electrochromic devices. Accounts of Chemical Research, 2016,49(8):1469-1476.
DOI URL PMID |
[5] | WANG Z, WANG X, CONG S, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science & Engineering R-Reports, 2020,140:100524. |
[6] | GRANQVIST C G. Electrochromic tungsten oxide films: review of progress 1993-1998. Solar Energy Materials and Solar Cells, 2000,60(3):201-262. |
[7] | ZHENG H, OU J Z, STRANO M S, et al. Nanostructured tungsten oxide-properties, synthesis, and applications. Advanced Functional Materials, 2011,21(12):2175-2196. |
[8] | MEHMOOD A, LONG X, HAIDRY A A, et al. Trends in sputter deposited tungsten oxide structures for electrochromic applications: a review. Ceramics International, 2020,46(15):23295-23313. |
[9] |
MA D, WANG J. Inorganic electrochromic materials based on tungsten oxide and nickel oxide nanostructures. Science China- Chemistry, 2017,60(1):54-62.
DOI URL |
[10] | MA D, LI T, XU Z, et al. Electrochromic devices based on tungsten oxide films with honeycomb-like nanostructures and nanoribbons array. Solar Energy Materials and Solar Cells, 2018,177:51-56. |
[11] | PATIL P S, KADAM L D. Preparation and characterization of spray pyrolyzed nickel oxide (NiO) thin films. Applied Surface Science, 2002,199(1-4):211-221. |
[12] |
XIA X H, TU J P, ZHANG J, et al. Electrochromic properties of porous NiO thin films prepared by a chemical bath deposition. Solar Energy Materials and Solar Cells, 2008,92(6):628-633.
DOI URL |
[13] |
LUO Z, LIU L, YANG X, et al. Revealing the charge storage mechanism of nickel oxide electrochromic supercapacitors. ACS Applied Materials & Interfaces, 2020,12(35):39098-39107.
URL PMID |
[14] | LI X, CHU J, CHENG Y, et al. Novel prussian blue@carbon-dots hybrid thin film: the impact of carbon-dots on material structure and electrochromic performance. Electrochimica Acta, 2020,355:136659. |
[15] | CHOI D, SON M, IM T, et al. Crack-free fabrication of prussian blue-based blending film for the dramatic enhancement of dual electrochromic device. Ceramics International, 2020,46(13):21008-21013. |
[16] | QIAN J, MA D, XU Z, et al. Electrochromic properties of hydrothermally grown Prussian blue film and device. Solar Energy Materials and Solar Cells, 2018,177:9-14. |
[17] |
KOBAYASHI T, YONEYAMA H, TAMURA H. Polyaniline film-coated electrodes as electrochromic display devices. Journal of Electroanalytical Chemistry, 1984,161(2):419-423.
DOI URL |
[18] |
WANG Y, JIANG H, ZHENG R, et al. A flexible, electrochromic, rechargeable Zn-ion battery based on actiniae-like self-doped polyaniline cathode. Journal of Materials Chemistry A, 2020,8(25):12799-12809.
DOI URL |
[19] | KORENT A, SODERZNIK K Z, STURM S, et al. A correlative study of polyaniline electropolymerization and its electrochromic behavior. Journal of the Electrochemical Society, 2020,167(10):106504. |
[20] | PRAKASH A S, MANIKANDAN P, RAMESHA K, et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chemistry of Materials, 2010,22(9):2857-2863. |
[21] | YI T F, JIANG L J, SHU J, et al. Recent development and application of Li4Ti5O12 as anode material of lithium ion battery. Journal of Physics and Chemistry of Solids, 2010,71(9):1236-1242. |
[22] |
ZHAO L, HU Y S, LI H, et al. Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Advanced Materials, 2011,23(11):1385-1388.
DOI URL PMID |
[23] | JUNG H G, MYUNG S T, YOON C S, et al. Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy & Environmental Science, 2011,4(4):1345-1351. |
[24] | SHI X, YU S, DENG T, et al. Unlock the potential of Li4Ti5O12 for high-voltage/long-cycling-life and high-safety batteries: dual-ion architecture superior to lithium-ion storage. Journal of Energy Chemistry, 2020,44:13-18. |
[25] |
YU X, WANG R, HE Y, et al. Electrochromic behavior of transparent Li4Ti5O12/FTO electrode. Electrochemical and Solid State Letters, 2010,13(8):J99-J101.
DOI URL |
[26] |
GUO Z F, PAN K, WANG X J. Electrochromic & magnetic properties of electrode materials for lithium ion batteries. Chinese Physics B, 2016,25(1):17801.
DOI URL |
[27] |
ROEDER M, BELEKE A B, GUNTOW U, et al. Li4Ti5O12 and LiMn2O4 thin-film electrodes on transparent conducting oxides for all-solid-state and electrochromic applications. Journal of Power Sources, 2016,301:35-40.
DOI URL |
[28] |
MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: a visible-to- infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 2018,28:1802180.
DOI URL |
[29] |
LI M, GOULD T, SU Z, et al. Electrochromic properties of Li4Ti5O12: from visible to infrared spectrum. Applied Physics Letters, 2019,115(7):073902.
DOI URL |
[30] |
JOSHI Y, SAKSENA A, HADJIXENOPHONTOS E, et al. Electrochromic behavior and phase transformation in Li4+xTi5O12 upon lithium-ion deintercalation/intercalation. ACS Applied Materials & Interfaces, 2020,12(9):10616-10625.
DOI URL PMID |
[31] |
MOSA J, VELEZ J F, LORITE I, et al. Film-shaped Sol-Gel Li4Ti5O12 electrode for lithium-ion microbatteries. Journal of Power Sources, 2012,205:491-494.
DOI URL |
[32] |
MOSA J, VÉLEZ J F, REINOSA J J. et al. Li4Ti5O12 thin-film electrodes by Sol-Gel for lithium-ion microbatteries. Journal of Power Sources, 2013,244:482-487.
DOI URL |
[33] |
MOSA J, APARICIO M, TADANAGA K, et al. Li4Ti5O12 thin-film electrodes by in-situ synthesis of lithium alkoxide for Li-ion microbatteries. Electrochimica Acta, 2014,149:293-299.
DOI URL |
[34] |
ANH V, QIAN Y, STEIN A. Porous electrode materials for lithium-ion batteries-how to prepare them and what makes them special. Advanced Energy Materials, 2012,2(9):1056-1085.
DOI URL |
[35] |
XIE Z, LIU Q, ZHANG Q, et al. Fast-switching quasi-solid state electrochromic full device based on mesoporous WO3 and NiO thin films Solar Energy Materials and Solar Cells, 2019,200:110017.
DOI URL |
[36] |
WANG M, LIU Q, DONG G, et al. Influence of thickness on the structure, electrical, optical and electrochromic properties of AZO thin films and their inorganic all-solid-state devices. Electrochimica Acta, 2017,258:1336-1347.
DOI URL |
[37] |
SUTHAR D, CHASTA G, HIMANSHU , et al. Impact of different annealing conditions on physical properties of ZnSe thin films for ecofriendly buffer layer applications. Materials Research Bulletin, 2020,132:110982.
DOI URL |
[38] |
BATHE S R, ILLA M S, NARAYAN R, et al. Electrochromism in polymer-electrolyte-enabled nanostructured WO3: active layer thickness and morphology on device performance ChemNanoMat, 2018,4(2):203-212.
DOI URL |
[39] |
SENGUPTA S S, PARK S M, PAYNE D A, et al. Origins and evolution of stress development in Sol-Gel derived thin layers and multideposited coatings of lead titanate. Journal of Applied Physics, 1998,83(4):2291-2296.
DOI URL |
[40] |
KRAJEWSKI M, HAMANKIEWICZ B, CZERWIŃSKI A. Voltammetric and impedance characterization of Li4Ti5O12/n-Ag composite for lithium-ion batteries. Electrochimica Acta, 2016,219:277-283.
DOI URL |
[41] |
QIN M, HAO Z, LI Y, et al. Preparation of ternary phase Li4Ti5O12/anatase/rutile nanocomposites with defects and their enhanced capability for lithium ion storage. Journal of Alloys and Compounds, 2018,769:463-470.
DOI URL |
[42] |
WEN R T, GRANQVIST C G, NIKLASSON G A. Eliminating degradation and uncovering ion-trapping dynamics in electrochromic WO3 thin films. Nature Materials, 2015,14(10):996-1001.
DOI URL PMID |
[1] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[2] | JIA Hanxiang, SHAO Zewei, HUANG Aibin, JIN Pingshi, CAO Xun. Sandwich Structured Electrolyte of High Sputtering Efficiency for All-solid-state Electrochromic Devices by Optical Design [J]. Journal of Inorganic Materials, 2021, 36(5): 479-484. |
[3] | ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials [J]. Journal of Inorganic Materials, 2021, 36(5): 451-460. |
[4] | ZHONG Xiaolan, LIU Xueqing, DIAO Xungang. Electrochromic Devices Based on Tungsten Oxide and Nickel Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(2): 128-139. |
[5] | FANG Huajing, ZHAO Zetian, WU Wenting, WANG Hong. Progress in Flexible Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 140-151. |
[6] | ZHOU Kailing, WANG Hao, ZHANG Qianqian, LIU Jingbing, YAN Hui. Dynamic Process of Ions Transport and Cyclic Stability of WO3 Electrochromic Film [J]. Journal of Inorganic Materials, 2021, 36(2): 152-160. |
[7] | ZHAO Qi, QIAO Ke, YAO Yongji, CHEN Zhang, CHEN Dongchu, GAO Yanfeng. High-conductivity Hydrophobic Fumed-SiO2 Composite Gel Electrolyte for High Performance Electrochromic Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 161-167. |
[8] | JIA Hanxiang, CAO Xun, JIN Pingshi. Advances in Inorganic All-solid-state Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2020, 35(5): 511-524. |
[9] | CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film [J]. Journal of Inorganic Materials, 2020, 35(2): 217-223. |
[10] | TAN Yi, XUE Bing. Research Progress on Lithium Titanate as Anode Material in Lithium-ion Battery [J]. Journal of Inorganic Materials, 2018, 33(5): 475-482. |
[11] | YUE Yan-Fang, LI Hai-Zeng, LI Ke-Rui, WANG Jin-Min, ZHANG Qing-Hong, LI Yao-Gang, CHEN Pei, WANG Hong-Zhi. Preparation and Properties of NiO/PB Hybrid Electrochromic Fil [J]. Journal of Inorganic Materials, 2017, 32(9): 949-954. |
[12] | PENG Ming-Dong, ZHANG Yu-Zhi, SONG Li-Xin, YIN Xiao-Fu, WANG Pan-Pan, WU Ling-Nan, HU Xing-Fang. Structure and Electrochromic Properties of Titanium-doped WO3 Thin Film by Sputtering [J]. Journal of Inorganic Materials, 2017, 32(3): 287-292. |
[13] | QIU Cai-Xia, YUAN Zhong-Zhi, LIU Ling, CHENG Si-Jie, LIU Jin-Cheng. Preparation and Characterization of Ge4+-doping Li4Ti5O12 Anode Material for Li-ion Battery and Its Electrochemical Properties [J]. Journal of Inorganic Materials, 2013, 28(7): 727-732. |
[14] | GAO Jian, MU Xin, LI Jian-Jun, HE Xiang-Ming, JIANG Chang-Yin. Preparation and Characterization of Porous Spherical Li4Ti5O12/C Anode Material for Lithium Ion Batteries [J]. Journal of Inorganic Materials, 2012, 27(3): 253-257. |
[15] | DONG Hong-Yu, ZHANG Zhi-Jun, YIN Yan-Hong, YANG Shu-Ting. Preparation and Electrochemical Performance of Li4Ti4.95Al0.05O12/C Anode Materials [J]. Journal of Inorganic Materials, 2012, 27(12): 1251-1255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||