Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (8): 835-840.DOI: 10.15541/jim20200538
Special Issue: 【虚拟专辑】热电材料(2020~2021)
• RESEARCH ARTICLE • Previous Articles Next Articles
LU Xu1,2(), HOU Jichong1, ZHANG Qiang1,2(), FAN Jianfeng1, CHEN Shaoping2, WANG Xiaomin1,2()
Received:
2020-09-15
Revised:
2020-11-04
Published:
2021-08-20
Online:
2020-12-01
Contact:
ZHANG Qiang, associate professor. E-mail:zhangqiang@tyut.edu.cn; WANG Xiaomin, professor. E-mail:wangxiaomin@tyut.edu.cn
About author:
LU Xu(1995-), male, Master candidate. E-mail: lx1486479798@163.com
Supported by:
CLC Number:
LU Xu, HOU Jichong, ZHANG Qiang, FAN Jianfeng, CHEN Shaoping, WANG Xiaomin. Effect of Mg Content on Thermoelectric Property of Mg3(1+z)Sb2 Compounds[J]. Journal of Inorganic Materials, 2021, 36(8): 835-840.
Fig. 1 (a) XRD patterns of Mg3(1+z)Sb2 (z=0, 0.02, 0.04, 0.06, 0.08), and (b) back scattering electron image and elemental mapping of (c) Mg, (d) Sb for Mg3(1+0.04)Sb2
Nominal composition | Actual composition | |
---|---|---|
Mg | Sb | |
Mg3Sb2 | 2.88 | 2.00 |
Mg3.06Sb2 | 2.92 | 2.00 |
Mg3.12Sb2 | 2.97 | 2.00 |
Mg3.18Sb2 | 3.02 | 2.00 |
Mg3.24Sb2 | 3.04 | 2.00 |
Table 1 Actual compositions of Mg3(1+z)Sb2 (z=0, 0.02, 0.04, 0.06, 0.08)
Nominal composition | Actual composition | |
---|---|---|
Mg | Sb | |
Mg3Sb2 | 2.88 | 2.00 |
Mg3.06Sb2 | 2.92 | 2.00 |
Mg3.12Sb2 | 2.97 | 2.00 |
Mg3.18Sb2 | 3.02 | 2.00 |
Mg3.24Sb2 | 3.04 | 2.00 |
Fig. 2 Temperature dependent electrical transport properties of Mg3(1+z)Sb2 (z=0, 0.02, 0.04, 0.06, 0.08) (a) Electrical conductivity, σ; (b) Carrier concentration, pH(nH); (c) Hall coefficient RH; (d) Mobility, μ; (e) Seebeck coefficient, α; (f) Power factor, PF
Fig. 3 Temperature dependent thermal conductivities of Mg3(1+z)Sb2 (z=0, 0.02, 0.04, 0.06, 0.08) (a) Total thermal conductivity κ; (b) Carrier thermal conductivity κC; (c) Lattice thermal conductivity κL
[1] |
DISALVO. Thermoelectric cooling and power generation. Science , 1999, 285(5428):703-706.
DOI URL |
[2] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials , 2008, 7(2):105-114.
DOI URL |
[3] |
WANG X, LI W, WANG C, et al. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. Journal of Materials Chemistry A , 2017, 5(46):24185-24192.
DOI URL |
[4] | HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science , 2017, 357(1369):eaak9997. |
[5] |
TANI J I, KIDO H. Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B: Condensed Matter , 2005, 364(1-4):218-224.
DOI URL |
[6] |
OHNO S, IMASATO K, ANAND S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule , 2018, 2(1):141-154.
DOI URL |
[7] |
PONNAMBALAM V, MORELLI D T. On the thermoelectric properties of Zintl compounds Mg3Bi2-xPnx(Pn=P and Sb). Journal of Electronic Materials , 2013, 42(7):1307-1312.
DOI URL |
[8] |
CONDRON C L, KAUZLARICH S M, GASCOIN F, et al. Thermoelectric properties and microstructure of Mg3Sb2. Journal of Solid State Chemistry , 2006, 179(8):2252-2257.
DOI URL |
[9] |
BHARDWAJ A, SHUKLA A K, DHAKATE S R, et al. Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Advances , 2015, 5(15):11058-11070.
DOI URL |
[10] |
BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances , 2013, 3(22):8504-8516.
DOI URL |
[11] |
BHARDWAJ A, MISRA D K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Advances , 2014, 4(65):34552-34560.
DOI URL |
[12] |
BHARDWAJ A, CHAUHAN N S, MISRA D K. Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering. Journal of Materials Chemistry A , 2015, 3(20):10777-10786.
DOI URL |
[13] |
BHARDWAJ A, CHAUHAN N S, GOEL S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit. Physical Chemistry Chemical Physics , 2016, 18(8):6191-6200.
DOI URL |
[14] |
AHMADPOUR F, KOLODIAZHNYI T, MOZHARIVSKYJ Y. Structural and physical properties of Mg3-xZnxSb2 (x=0-1.34). Journal of Solid State Chemistry , 2007, 180(9):2420-2428.
DOI URL |
[15] |
SONG L, ZHANG J, IVERSEN B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. Journal of Materials Chemistry A , 2017, 5(10):4932-4939.
DOI URL |
[16] |
SHUAI J, WANG Y M, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Materialia , 2015, 93:187-193.
DOI URL |
[17] |
TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+dSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. , 2016, 28(46):10182-10187.
DOI URL |
[18] |
GORAI P, ORTIZ B R, TOBERER E S, et al. Investigation of n-type doping strategies for Mg3Sb2. Journal of Materials Chemistry A , 2018, 6(28):13806-13815.
DOI URL |
[19] |
MAO J, WU Y, SONG S, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Letters , 2017, 2(10):2245-2250.
DOI URL |
[20] |
MISRA D K, RAJPUT A, BHARDWAJ A, et al. Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Applied Physics Letters , 2015, 106(10):103901.
DOI URL |
[21] |
MI J L, ZHAO X B, ZHU T J, et al. Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. Journal of Physics D-Applied Physics , 2008, 41(20):205403.
DOI URL |
[22] |
PENG B, ZHANG H, SHAO H, et al. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. Journal of Materials Chemistry A , 2018, 6(5):2018-2033.
DOI URL |
[23] |
SUN L, WU C Y, HAN J C, et al. Band structure and thermoelectric performances of antimony under trigonal transformation. Journal of Applied Physics , 2019, 125(14):145102.
DOI URL |
[24] |
ZHANG Q, CHENG L, LIU W, et al. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. Phys. Chem. Chem. Phys. , 2014, 16(43):23576-23583.
DOI URL |
[25] |
GORDON I U, WAGNER P, DAS A U, et al. Comparative Hall studies in the electron- and hole-doped manganites La0.33Ca0.67MnO3 and La0.70Ca0.30MnO3. Phys. Rev. B , 2000, 62(17):11633-11638.
DOI URL |
[26] |
ZHANG J, SONG L, MAMAKHEL A, et al. High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chemistry of Materials , 2017, 29(12):5371-5383.
DOI URL |
[27] |
CHEN C, LI X F, LI S, et al. Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. Journal of Materials Science , 2018, 53(23):16001-16009.
DOI URL |
[28] | TRITT T M. Thermal conductivity: theory, properties and applications. New York: Springer Science & Business Media, 2004: 12-20. |
[1] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[2] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[3] | LIU Dan, ZHAO Yaxin, GUO Rui, LIU Yantao, ZHANG Zhidong, ZHANG Zengxing, XUE Chenyang. Effect of Annealing Conditions on Thermoelectric Properties of Magnetron Sputtered MgO-Ag3Sb-Sb2O4 Flexible Films [J]. Journal of Inorganic Materials, 2022, 37(12): 1302-1310. |
[4] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[5] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
[6] | ZENG Yulin, CHEN Jiajie, TIAN Zhengfang, ZHU Min, ZHU Yufang. Preparation of Mesoporous Organosilica-based Nanosystem for in vitro Synergistic Chemo- and Photothermal Therapy [J]. Journal of Inorganic Materials, 2020, 35(12): 1365-1372. |
[7] | LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach [J]. Journal of Inorganic Materials, 2019, 34(3): 294-300. |
[8] | LI Song-Hao, ZHANG Xin, LIU Hong-Liang, ZHENG Liang, ZHANG Jiu-Xing. Synthesis and Thermoelectric Properties of Ag-doped SnSe [J]. Journal of Inorganic Materials, 2016, 31(7): 751-755. |
[9] | WU Zi-Hua, XIE Hua-Qing, WANG Yuan-Yuan, MAO Jian-Hui, XING Jiao-Jiao, LI Yi-Huai. PPP Addition to Improve Thermoelectric Properties of ZnO-based Thermoelectric Composites [J]. Journal of Inorganic Materials, 2016, 31(11): 1249-1254. |
[10] | ZHAN Bin, LAN Jin-Le, LIU Yao-Chun, DING Jing-Xuan, LIN Yuan-Hua, NAN Ce-Wen. Research Progress of Oxides Thermoelectric Materials [J]. Journal of Inorganic Materials, 2014, 29(3): 237-244. |
[11] | WU Zi-Hua, XIE Hua-Qing, ZENG Qing-Feng. Thermoelectric Properties of Ni-doped ZnO Synthesized by Sol-Gel Processing [J]. Journal of Inorganic Materials, 2013, 28(9): 921-924. |
[12] | JIN Jing, ZHANG Xin-Yi, ZHOU Ying-Xue. Soft X-ray Emission Spectra of Mn-doped ZnO Thin Films [J]. Journal of Inorganic Materials, 2012, 27(3): 296-300. |
[13] | DU Bao-Li, LI Han, TANG Xin-Feng. Enhanced Thermoelectric Performance in Na/Se Doped p-type AgSbTe2 Compound [J]. Journal of Inorganic Materials, 2011, 26(7): 680-684. |
[14] | WANG Shan-Yu, XIE Wen-Jie, TANG Xin-Feng. Effects of Preparation Techniques on the Thermoelectric Properties and Pressive Strengths of n-type Bi2Te3 Based Materials [J]. Journal of Inorganic Materials, 2010, 25(6): 609-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||