Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (12): 1398-1406.DOI: 10.15541/jim20200140
Special Issue: 生物材料论文精选(2020)
• RESEARCH LETTERS • Previous Articles
CHANG Yuchen1(),LIN Ziyang1,XIE Xin1,WU Zhangfan1,YAO Aihua1,YE Song1,LIN Jian1,WANG Deping1(),CUI Xu2()
Received:
2020-03-17
Published:
2020-12-20
Online:
2020-11-23
About author:
CHANG Yuchen(1995–), female, Master candidate. E-mail: changyuchencccc@163.com
Supported by:
CLC Number:
CHANG Yuchen, LIN Ziyang, XIE Xin, WU Zhangfan, YAO Aihua, YE Song, LIN Jian, WANG Deping, CUI Xu. An Injectable Composite Bone Cement Based on Mesoporous Borosilicate Bioactive Glass Spheres[J]. Journal of Inorganic Materials, 2020, 35(12): 1398-1406.
Glass | B2O3 | SiO2 | CaO | P2O5 |
---|---|---|---|---|
MBGS-20 | 20 | 40 | 36 | 4 |
MBGS-30 | 30 | 30 | 36 | 4 |
MBGS-40 | 40 | 20 | 36 | 4 |
Glass | B2O3 | SiO2 | CaO | P2O5 |
---|---|---|---|---|
MBGS-20 | 20 | 40 | 36 | 4 |
MBGS-30 | 30 | 30 | 36 | 4 |
MBGS-40 | 40 | 20 | 36 | 4 |
Sample | Specific surface area/(m2?g-1) | Average pore diameter/nm | Total pore volume/(mL?g-1) |
---|---|---|---|
MBGS-20 | 161.71 | 13.33 | 0.052 |
MBGS-30 | 176.98 | 13.97 | 0.057 |
MBGS-40 | 214.28 | 15.11 | 0.079 |
Sample | Specific surface area/(m2?g-1) | Average pore diameter/nm | Total pore volume/(mL?g-1) |
---|---|---|---|
MBGS-20 | 161.71 | 13.33 | 0.052 |
MBGS-30 | 176.98 | 13.97 | 0.057 |
MBGS-40 | 214.28 | 15.11 | 0.079 |
[1] | VERRIER S, HUGHES L, ALVES A, et al. Evaluation of the in vitro cell-material interactions and in vivo osteo-integration of a spinal acrylic bone cement. European Spine Journal, 2012,21(6):S800-S809. |
[2] | KRETLOW J D, KLOUDA L, MIKOS A G. Injectable matrices and scaffolds for drug delivery in tissue engineering. Adv. Drug Delivery Rev., 2007,59(4/5):263-273. |
[3] |
LV Y, LI A L, ZHOU F, et al. A novel composite PMMA-based bone cement with reduced potential for thermal necrosis. ACS Appl. Mater. Interfaces, 2015,7(21):11280-11285.
DOI URL PMID |
[4] | CABANAS M V, RODRIGUEZ-LORENZO L M, VALLET-REGI M. Setting behavior and in vitro bioactivity of hydroxyapatite/ calcium sulfate cements. Chem. Mater., 2002,14(8):3550-3555. |
[5] |
JAMALI A, HILPERT A, DEBES J, et al. Hydroxyapatite/calcium carbonate (HA/CC) vs. plaster of Paris: a histomorphometric and radiographic study in a rabbit tibial defect model. Calcif Tissue Int., 2002,71(2):172-178.
DOI URL PMID |
[6] |
BOHNER M, BAROUD G. Injectability of calcium phosphate pastes. Biomaterials, 2005,26(13):1553-1563.
DOI URL PMID |
[7] |
HABIB M, BAROUD G, GITZHOFER F, et al. Mechanisms underlying the limited injectability of hydraulic calcium phosphate paste. Acta Biomaterialia, 2008,4(5):1465-1471.
DOI URL PMID |
[8] |
HOPPE A, GULDAL N S, BOCCACCINI A R. A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials, 2011,32(11):2757-2774.
DOI URL PMID |
[9] |
KANG M S, LEE N H, SINGH R K, et al. Nanocements produced from mesoporous bioactive glass nanoparticles. Biomaterials, 2018,162:183-199.
DOI URL PMID |
[10] |
CHEN C, LI H, PAN J F, et al. Biodegradable composite scaffolds of bioactive glass/chitosan/carboxymethyl cellulose for hemostatic and bone regeneration. Biotechnol. Lett., 2015,37(2):457-465.
DOI URL PMID |
[11] | LI H B, WANG D P, WU Y Y, et al. Effect of citric acid concentration on the properties of borate glass bone cement. Journal of Inorganic Materials, 2017,32(8):831-836. |
[12] | CUI X, HUANG W H, ZHANG Y D, et al. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model. Materials Science & Engineering C-Materials for Biological Applications, 2017,73:585-595. |
[13] | CUI X, ZHANG Y D, WANG H, et al. An injectable borate bioactive glass cement for bone repair: preparation, bioactivity and setting mechanism. Journal of Non-Crystalline Solids, 2016,432:150-157. |
[14] | WU Y Y, YE S, YAO A H, et al. Effect of gas-foaming porogen- nahco3 and citric acid on the properties of injectable macroporous borate bioactive glass cement. Journal of Inorganic Materials, 2017,32(7):777-784. |
[15] | MOSEMAN R F. Chemical disposition of boron in animals and humans. Environmental Health Perspectives, 1994,102(suppl 7):113-117. |
[16] |
DELLA PEPA G, BRANDI M L. Microelements for bone boost: the last but not the least. Clinical Cases in Mineral and Bone Metabolism, 2016,13(3):181-185.
DOI URL PMID |
[17] |
DURAND L A H, GONGORA A, LOPEZ J M P, et al. In vitro endothelial cell response to ionic dissolution products from boron- doped bioactive glass in the SiO2-CaO-P2O5-Na2O system. Journal of Materials Chemistry B, 2014,2(43):7620-7630.
DOI URL PMID |
[18] | YAO A H, WANG D P, HUANG W H, et al. In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. Journal of The American Ceramic Society, 2007,90(1):303-306. |
[19] | FU Q A, RAHAMAN M N, FU H L, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. I. Preparation and in vitro degradation. Journal of Biomedical Materials Research Part A, 2010,95A(1):164-171. |
[20] | FU Q A, RAHAMAN M N, BAL B S, et al. Silicate, borosilicate, and borate bioactive glass scaffolds with controllable degradation rate for bone tissue engineering applications. II. In vitro and in vivo biological evaluation. Journal of Biomedical Materials Research Part A, 2010,95A(1):172-179. |
[21] |
BROWN R F, RAHAMAN M N, DWILEWICZ A B, et al. Effect of borate glass composition on its conversion to hydroxyapatite and on the proliferation of MC3T3-E1 cells. Journal of Biomedical Materials Research Part A, 2009,88(2):392-400.
DOI URL PMID |
[22] |
TURCO G, MARSICH E, BELLOMO F, et al. Alginate/ hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity. Biomacromolecules, 2009,10(6):1575-1583.
DOI URL PMID |
[23] |
LEE K Y, MOONEY D J. Alginate: properties and biomedical applications. Progress in Polymer Science, 2012,37(1):106-126.
DOI URL PMID |
[24] | SCHERDEL C, REICHENAUER G, WIENER M. Relationship between pore volumes and surface areas derived from the evaluation of N2-sorption data by DR-, BET- and t-plot. Microporous Mesoporous Mater., 2010,132(3):572-575. |
[25] | LANDERS J, GOR G Y, NEIMARK A V. Density functional theory methods for characterization of porous materials. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2013,437:3-32. |
[26] | XIE X, PANG L B, YAO A H, et al. Nanocement produced from borosilicate bioactive glass nanoparticles composited with alginate. Australian Journal of Chemistry, 2019,72(5):354-361. |
[27] |
GBURECK U, BARRALET J E, SPATZ K, et al. Ionic modification of calcium phosphate cement viscosity. Part I: hypodermic injection and strength improvement of apatite cement. Biomaterials, 2004,25(11):2187-2195.
DOI URL PMID |
[28] |
CHEN C C, WANG C W, HSUEH N S, et al. Improvement of in vitro physicochemical properties and osteogenic activity of calcium sulfate cement for bone repair by dicalcium silicate. Journal of Alloys and Compounds, 2014,585:25-31.
DOI URL |
[29] |
O'NEILL R, MCCARTHY H O, MONTUFAR E B, et al. Critical review: Injectability of calcium phosphate pastes and cements. Acta Biomaterialia, 2017,50:1-19.
DOI URL PMID |
[30] |
CATAURO M, BOLLINO F, RENELLA R A, et al. Sol-Gel synthesis of SiO2-CaO-P2O5 glasses: Influence of the heat treatment on their bioactivity and biocompatibility. Ceramics International, 2015,41(10):12578-12588.
DOI URL |
[31] |
LIU X, RAHAMAN M N, DAY D E. Conversion of melt-derived microfibrous borate (13-93B3) and silicate (45S5) bioactive glass in a simulated body fluid. Journal of Materials Science-Materials in Medicine, 2013,24(3):583-595.
DOI URL |
[32] |
CUI J, CAO X, SHI L, et al. Influence of the slight adjustment of oxides on the structural and physico-chemical properties of thin film transistor-liquid crystal display substrate glass. Royal Soc. Open Sci., 2020,7(1):191425-1-12.
DOI URL |
[33] |
ZHANG Y, ZHANG Z F, YAN W, et al. Hexagonal mesoporous silica islands to enhance photovoltaic performance of planar junction perovskite solar cells. Journal of Materials Chemistry A, 2017,5(4):1415-1420.
DOI URL |
[34] |
REN X, TUO Q, TIAN K, et al. Enhancement of osteogenesis using a novel porous hydroxyapatite scaffold in vivo and in vitro. Ceramics International, 2018,44(17):21656-21665.
DOI URL |
[35] |
LI S, SONG C, YANG S, et al. Supercritical CO2 foamed composite scaffolds incorporating bioactive lipids promote vascularized bone regeneration via Hif-1α upregulation and enhanced type H vessel formation. Acta Biomaterialia, 2019,94:253-267.
DOI URL PMID |
[36] |
ZHANG J T, LIU W Z, SCHNITZLER V, et al. Calcium phosphate cements for bone substitution: Chemistry, handling and mechanical properties. Acta Biomaterialia, 2014,10(3):1035-1049.
DOI URL |
[37] | WANG Y, LIAO T, SHI M, et al. Facile synthesis and in vitro bioactivity of radial mesoporous bioactive glasses. Materials Letters, 2017,206:205-209. |
[1] | WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 617-622. |
[2] | Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment [J]. Journal of Inorganic Materials, 2019, 34(4): 417-424. |
[3] | ZHANG Biao, YANG Chang-An, SHI Pei. Synthesis of Graphene/Hydroxyapatite Composite Bioceramics via Plasma Activated Sintering [J]. Journal of Inorganic Materials, 2018, 33(12): 1355-1359. |
[4] | WANG Ming-Hui, ZHONG Hong-Bin, FAN Yu-Chi, CHEN Ting. Spark Plasma Sintering of Bioactive Ca2MgSi2O7 Ceramics [J]. Journal of Inorganic Materials, 2017, 32(8): 825-830. |
[5] | TAN Guo-Xin, OUYANG Kong-You, ZHOU Lei, LIU Yan, ZHANG Lan, NING Cheng-Yun. Titanium Modification by Calcium Ion Chelated Polydopamine and Its Cytocompatibility [J]. Journal of Inorganic Materials, 2015, 30(10): 1075-1080. |
[6] | YANG Guo-Jing, LIN Mian, ZHANG Lei, GOU Zhong-Ru. Progress of Calcium Sulfate and Inorganic Composites for Bone Defect Repair [J]. Journal of Inorganic Materials, 2013, 28(8): 795-803. |
[7] | XU Bin, ZHAO Chao-Yong, CAI Bing, FAN Hong-Song. Porous Titanium Treated by Nitric Acid with Varied Concentration and the Bioactivity in Vitro [J]. Journal of Inorganic Materials, 2012, 27(5): 555-560. |
[8] | LI Jin-Bo, LIU Xuan-Yong, LI Wei-Feng, ZHU Jian-Hao. Preparation and Characterization of Bioactive Poly (Lactic Acid)/SiO2-CaO Composite Membranes [J]. Journal of Inorganic Materials, 2011, 26(9): 998-1002. |
[9] | XUE Shi-Zhuang, ZHU Hai-Lin, CHEN Jian-Yong, FENG Xin-Xing, CHANG Jiang. Preparation and Properties of Mesoporous Bioactive Glass / Demineralized Bone Composite Scaffolds [J]. Journal of Inorganic Materials, 2011, 26(10): 1068-1072. |
[10] | HUANG Lin, NING Cong-Qin, DING Dong-Yan, BAI Shuo, QIN Rui, LI Ming, MAO Da-Li. Wettability and In Vitro Bioactivity of Doped TiO2 Nanotubes [J]. Journal of Inorganic Materials, 2010, 25(7): 775-779. |
[11] | SU Jia-Can,LI Ming,YU Bao-Qing,ZHANG Chun-Cai. Study on Porous Scaffold of Nano Hydroxyapatite/poly (ε-caprolactone) Bioactive Composite [J]. Journal of Inorganic Materials, 2009, 24(3): 485-490. |
[12] | LI Guang-Da,ZHOU Da-Li,FENG Dan-Ge,MAO Mao,GUO Yan,LI Shao-Min. Preparation and Properties of Magnetic Bioactive Glass-ceramics Doped with Mn-Zn Ferrite [J]. Journal of Inorganic Materials, 2008, 23(3): 621-625. |
[13] | LIN Kai-Li,CHANG Jiang,LU Jian-Xi,GAO Jian-Hua,ZENG Yi. Fabrication and Characterization of β-Ca 3(PO 4) 2/CaSiO 3 Composite Bioceramics [J]. Journal of Inorganic Materials, 2006, 21(6): 1429-1434. |
[14] | WANG Ying,WEI Jie,GUO Han,LIU Chang-Sheng. Bioactive Calcium Phosphate Cement with Anti-washout for Bone Replacement [J]. Journal of Inorganic Materials, 2006, 21(6): 1435-1442. |
[15] | ZHAO Yu-Tao,CHENG Xiao-Nong,DAI Qi-Xun,LIN Dong-Yang,LI Su-Min. HA(+ZrO2+Y2O3)/Ti6Al4V Bioactive Composite Coating Fabricated by RF Magnetron Sputtering [J]. Journal of Inorganic Materials, 2006, 21(5): 1237-1243. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||