Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 485-491.DOI: 10.15541/jim20200463
Special Issue: 电致变色材料与器件; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
WU Qi1,2(), CONG Shan1, ZHAO Zhigang1()
Received:
2020-08-13
Revised:
2020-09-25
Published:
2021-05-20
Online:
2021-04-19
Contact:
ZHAO Zhigang, professor. E-mail:zgzhao2011@sinano.ac.cn
About author:
WU Qi(1997-), female, Master candidate. E-mail:qwu2019@sinano.ac.cn
Supported by:
CLC Number:
WU Qi, CONG Shan, ZHAO Zhigang. Infrared Electrochromic Property of the Colorful Tungsten Oxide Films[J]. Journal of Inorganic Materials, 2021, 36(5): 485-491.
Fig. 1 Schematic illustration of the colorful film (a), cross- sectional SEM image (b), optical images of the electrochromic electrodes with different colors and the patterned samples (c), and reflectance spectra of electrode films with seven colors (d)
Fig. 2 Optical images of electrochromic films at different applied potentials (a), variation of reflectance spectra of yellow, purple and green films at different applied potential (b-d)
Fig. 4 Variation of mid-infrared reflectance spectra of yellow, purple and green films at different applied potentials (a-c), mid-infrared reflectance spectra of green films with different W thicknesses (d) Solid and dotted lines in (d) are the samples before and after coloration, respectively, wherein the applied voltage is fixed at -0.6 V
Color | Band | ΔR |
---|---|---|
Yellow | MW | 25.61% |
LW | 6.67% | |
Violet | MW | 33.68% |
LW | 8.91% | |
Green | MW | 46.00% |
LW | 15.39% |
Table 1 Reflectance modulation of films in MW and LW
Color | Band | ΔR |
---|---|---|
Yellow | MW | 25.61% |
LW | 6.67% | |
Violet | MW | 33.68% |
LW | 8.91% | |
Green | MW | 46.00% |
LW | 15.39% |
Fig. 5 Infrared thermal imaging of tungsten oxide films of different colors (a), infrared thermal imaging photos of green films with different negative potentials (b), optical images (c) and their corresponding reflectance curve changes (d)
[1] | GRANQVIST C G. Handbook of Inorganic Electrochromic Materials. Amsterdam: Elsevier, 1995: 9-13. |
[2] | MORTIMER R J, ROSSEINSKY D R, MONK P M S. Electrochromic Materials and Devices. New York: Wiley-VCH Verlag GmbH & Co. KGaA. 2015: 3-33. |
[3] | MORTIME R J. Electrochromic materials. Annual Review of Materials Research, 2011,41(1):241-268. |
[4] | WANG ZHEN, WANG XIAO-YU, CONG SHAN, et al. Fusing electrochromic technology with other advanced technologies: a new roadmap for future development. Materials Science and Engineering: R-Reports, 2020, 140: 100524-1-26. |
[5] |
LI NA, LI YAO, YIN YA-DONG, et al. Dynamically switchable multicolor electrochromic films. Small. Dynamically switchable multicolor electrochromic films. Small, 2019, 15(7): 1804974-1-7.
DOI URL PMID |
[6] | XIAO LI-LI, LÜ YING, LIU XING-YUAN, et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device. Advanced Optical Materials, 2017,6(1): 1700791-1-8. |
[7] |
LI HAI-ZENG, FIRBY C J, ELEZZABI A Y, et al. Rechargeable aqueous electrochromic batteries utilizing Ti-substituted tungsten molybdenum oxide based Zn2+ ion intercalation cathodes. Advanced Materials, 2019, 31(15): 1807065-1-9.
URL PMID |
[8] | ROGALSKI A, CHRZANOWSKI K. Infrared devices and techniques. Opto-Electronics Review, 2002,10(2):111-136. |
[9] |
XU CHENG-YI, STIUBIANU G T, GORODETSKY A A. Adaptive infrared-reflecting systems inspired by cephalopods. Science, 359(6383):1495-1500.
DOI URL PMID |
[10] | PENG LIANG, LIU DONG-QING, ZU MEI, et al. A multilayer film based selective thermal emitter for infrared stealth technology. Advanced Optical Materials, 2018, 6(23): 1801006-1-8. |
[11] |
LYU J, LIU ZENG-WEI, ZHANG XUE-TONG,et al. Nanofibrous Kevlar aerogel films and their phase-change composites for highly efficient infrared stealth. ACS Nano, 2019,13:2236-2245.
DOI URL PMID |
[12] |
CAI GUO-FA, WANG JIANG-XIN, LEE P S. Next-generation multifunctional electrochromic devices. Accounts of Chemical Research, 2016,49(8):1469-1476.
DOI URL PMID |
[13] |
CAI GUO-FA, CUI MENG-QI, LEE P S,et al. Ultra-large optical modulation of electrochromic porous WO3 film and the local monitoring of redox activity. Chemical Science, 2016,7(2):1373-1382.
DOI URL PMID |
[14] |
CONG SHAN, GENG FENG-XIA, ZHAO ZHI-GANG,et al. Single-crystalline tungsten oxide quantum dots for fast pseudocapacitor and electrochromic applications. Advanced Materials, 2014,26(25):4260-4267.
URL PMID |
[15] |
WANG ZHEN, ZHANG QING-ZHU, ZHAO ZHI-GANG, et al. Using intrinsic intracrystalline tunnels for near-infrared and visible- light selective electrochromic modulation. Advanced Optical Materials, 2017, 5(11): 1700194-1-6.
DOI URL PMID |
[16] | ZHAO JIAN-CUN, LEI DANG-YUAN, YU YI-TING, et al. Defining deep-subwavelength-resolution, wide-color-gamut, and large-viewing-angle flexible subtractive colors with an ultrathin asymmetric Fabry-Perot lossy cavity. Advanced Optical Materials, 2019, 7(23): 1900646-1-8. |
[17] | YANG ZHENG-MEI, ZHOU YAN-MING, DUAN HUI-GAO, et al. Reflective color filters and monolithic color printing based on asymmetric Fabry-Perot cavities using nickel as a broadband absorber. Advanced Optical Materials, 2016,4(8):1196-1202. |
[18] |
YANG ZHENG-MEI, JI CHEN-GANG, LIU DONG, et al. Enhancing the purity of reflective structural colors with ultrathin bilayer media as effective ideal absorbers. Advanced Optical Materials, 2019, 7(21): 1900739-1-9.
URL PMID |
[19] | LEE K T, HAN S Y, PARK H J. Omnidirectional flexible transmissive structural colors with high-color-purity and high- efficiency exploiting multicavity resonances. Advanced Optical Materials, 2017, 5(14): 1700284-1-9. |
[20] | WANG ZHEN, WANG XIAO-YU, ZHAO ZHI-GANG, et al. Towards full-colour tunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nature Communications, 2020, 11(1): 302-1-9. |
[21] |
CHEN JIAN, WANG ZHEN, ZHAO ZHI-GANG, et al. Fabry-Perot cavity-type electrochromic supercapacitors with exceptionally versatile color tunability. Nano Letters, 2020,20(3):1915-1922.
URL PMID |
[22] | SAUVET K, SAUQUES L, ROUGIER A. IR electrochromic WO3 thin films: from optimization to devices. Solar Energy Materials and Solar Cells, 2009,93(12):2045-2049. |
[23] | SALISBURY J W, WALD A, D'ARIA D M. Thermal-infrared remote sensing and Kirchhoff's law 1. laboratory measurements. Journal of Geophysical Research: Solid Earth, 1994,99(B6):11897-11911. |
[24] | KORB A R, SALISBURY J W, D'ARIA D M. Thermal-infrared remote sensing and Kirchhoff's law: 2. field measurements. Journal of Geophysical Research: Solid Earth, 1999,104(B7):15339-15350. |
[25] | ZHANG XIANG, TIAN YAN-LONG, LI YAO, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films. Solar Energy Materials and Solar Cells, 2019,200: 109916-1-6. |
[26] | CHONG S V, INGHAM B, TALLON J L. Novel materials based on organic-tungsten oxide hybrid systems I: synthesis and characterization. Current Applied Physics, 2004,4:197-201. |
[1] | ZHANG Jiaqiang, ZOU Xinlei, WANG Nengze, JIA Chunyang. Zn-Fe PBA Films by Two-step Electrodeposition Method: Preparation and Performance in Electrochromic Devices [J]. Journal of Inorganic Materials, 2022, 37(9): 961-968. |
[2] | ZHANG Xiaoyu, LIU Yongsheng, LI Ran, LI Yaogang, ZHANG Qinghong, HOU Chengyi, LI Kerui, WANG Hongzhi. Cu3(HHTP)2 Film-based Ionic-liquid Electrochromic Electrode [J]. Journal of Inorganic Materials, 2022, 37(8): 883-890. |
[3] | WANG Jinmin, HOU Lijun, MA Dongyun. Molybdenum Oxide Electrochromic Materials and Devices [J]. Journal of Inorganic Materials, 2021, 36(5): 461-470. |
[4] | FAN Hongwei, LI Kerui, HOU Chengyi, ZHANG Qinghong, LI Yaogang, WANG Hongzhi. Multi-functional Electrochromic Devices: Integration Strategies Based on Multiple and Single Devices [J]. Journal of Inorganic Materials, 2021, 36(2): 115-127. |
[5] | WANG Jinmin, YU Hongyu, MA Dongyun. Progress in the Preparation and Application of Nanostructured Manganese Dioxide [J]. Journal of Inorganic Materials, 2020, 35(12): 1307-1314. |
[6] | LU Shu-Juan, WANG Chang, ZHAO Bo-Wen, WANG Hao, LIU Jing-Bing, YAN Hui. Electrochromic Properties of PEG-modified Tungsten Oxide Thin Films [J]. Journal of Inorganic Materials, 2017, 32(2): 185-190. |
[7] | HUANG Yin-Song,ZHANG Yu-Zhi,HU Xing-Fang. Electrochromic Properties of Niobium Oxide Thin Films Fabricated byRF Sputtering [J]. Journal of Inorganic Materials, 2002, 17(3): 632-636. |
[8] | WANG Zhong-Chun,HU Xing-Fang. Dynamic Coloration Properties of Spin-coated WO3 Thin Films [J]. Journal of Inorganic Materials, 1998, 13(6): 932-936. |
[9] | WU Guangming,WU Yonggang,Ni Xingyuan,ZHOU Zhen,ZHANG Huiqin,JIN Zhemin,WU Xiang. Investigation of Charge Storage Properties in V2O5 Thin Films [J]. Journal of Inorganic Materials, 1997, 12(4): 545-550. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||