Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 451-460.DOI: 10.15541/jim20200465
Special Issue: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• TOPLCAL SECTION • Previous Articles Next Articles
ZHANG Xiang1, LI Wenjie2(), WANG Lebin1, CHEN Xi1, ZHAO Jiupeng2, LI Yao1()
Received:
2020-08-14
Revised:
2020-09-22
Published:
2021-05-20
Online:
2021-04-19
Contact:
LI Yao, professor.E-mail: yaoli@hit.edu.cn
About author:
ZHANG Xiang(1986-), male, lecturer. E-mail:zhangxhit@hit.edu.cn
Supported by:
CLC Number:
ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451-460.
Fig. 1 Top-view SEM images of coralline V2O5 nanorod architecture (a), digital photos of coralline V2O5 architecture under different voltages (b), SEM images of SnO2/V2O5 films (c), color parameters (Lab color mode) and optical images of SnO2/V2O5 films at different working states (d), cross-sectional SEM image of the ITO/WO3/Ta2O5/Li/V2O5/ITO ECD (Electrochromic Device) (e), digital photos of the ECD in the bleached and colored state (f), schematic illustration of a large-scale Zn-SVO electrochromic display showing three intrinsic colors (g), and digital photographs of the large-scale Zn-SVO display under different voltage bias conditions (h)[17,18,19,20]
Fig. 2 Color effects recorded at a 60° angle for cathodic coloration (yellow stack) and anodic coloration (green stack) of an orange-red 7 double-layer nanoparticle NiO/WO3 stack (a), and electrochromic properties of dense WO3 film and 4-bilayer electrochromic distributed Bragg reflectors with various Bragg wavelength (b) (λB=450, 550, 650 nm)[22,23]
Fig. 4 Scheme and photographs of the two-electrode electrochromic cell (a), digital images of the film during coloration (5-30 s) and bleaching process (1-3 s) (b)[25,26,27]
Fig. 9 Schematic drawing of graphene device (a), schematic representation of working principle of the graphene device (b), thermal camera images of device under the voltage bias of 0 and 3 V, respectively (c, d)[44]
Fig. 10 Crystal structures of Li4Ti5O12 and Li7Ti5O12 (a), visible-to-infrared spectral reflectance (b), photograph (top) and thermograph (bottom) in the two states (c)[45]
[1] | DEB S. A novel electrophotographic system. Applied Optics, 1969,8(101):192-195. |
[2] | ZHANG X, LI W J, LI Y, et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 2020,28:140-149. |
[3] |
CHEN X, DOU S L, LI W J, et al. All solid state electrochromic devices based on the LiF electrolyte. Chemical Communications, 2020,56:5018-5021.
URL PMID |
[4] | LI W J, ZHANG X, CHEN X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chemical Engineering Journal, 2020,398:125628. |
[5] | GREER B. Control System for Electrochromic Devices. U.S. Patent 7277215. 2007-10-2. |
[6] | WANG Z, PRADHAN A, ROZBICKI R. Electrochromic Devices. U.S. Patent 8764951. 2014-7-1. |
[7] | XU Q F, LI J, ZHAO J. A Kind of Electrochromic Glass. China, CN204595399U. 2015-8-26. |
[8] | ZHAO Y M, ZHANG X, CHEN X, et al. Preparation of WO3 films with controllable crystallinity for improved near-Infrared electrochromic performances. ACS Sustainable Chemistry & Engineering, 2020,8(31):11658-11666. |
[9] | XIA X H, TU J P, ZHANG J, et al. Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 2008,53(18):5721-5724. |
[10] | LI W J, ZHANG X, CHEN X, et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices Electrochimica Acta, 2020,355:136817. |
[11] | ZHOU D, XIE D, XIA X H, et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications Science China Chemistry, 2017,60(1):3-12. |
[12] |
SHENG M F, ZHANG L P, WEST L J, et al. Multicolor electrochromic dye-doped liquid crystal yolk-shell microcapsules. ACS Applied Materials & Interfaces, 2020,12(26):29728-29736
DOI URL PMID |
[13] |
MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications. Displays, 2006,27:2-18.
DOI URL |
[14] | YU H T, SHAO S, YAN L J, et al. Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016,4:2269-2273. |
[15] | CHANDRASEKHAR P, ZAY B J, BIRUR G C, et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Advanced Functional Materials, 2002,12(2):95-103. |
[16] | CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry, 2009,19:2526-2552. |
[17] | TONG Z Q, LI N, LV H M, et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Solar Energy Materials and Solar Cells, 2016,146:135-143. |
[18] | ZHAO G F, WANG W Q, WANG X L, et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 2019,7:5702-5709. |
[19] |
ZHANG X, LI W J, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green. Chemical Communications, 2020,56:10062-10065.
URL PMID |
[20] | ZHANG W, LI H Z, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light: Science & Applications, 2020,9(1):121. |
[21] |
BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000,405(6785):437-440.
DOI URL PMID |
[22] | REDEL E, MLYNARSKI J, MOIR J, et al. Electrochromic Bragg mirror: ECBM. Advanced Materials, 2012,24(35):265-269. |
[23] | XIAO L L, LV Y, LIN J, et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device. Advanced Optical Materials, 2018,6(1):1-8. |
[24] |
WANG Z, WANG X Y, CONG S, et al. Towards full-colourtunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nature Communications, 2020,11(1):1-9.
URL PMID |
[25] | ARAKI S, NAKAMURA K, KOBAYASHI K, et al. Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials, 2012,24(23):122-126. |
[26] |
TSUBOI A, NAKAMURA K, KOBAYASHI N, et al. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Advanced Materials, 2013,25(23):3197-3201
URL PMID |
[27] | LI N, WEI P, YU L, et al. Dynamically switchable multicolor electrochromic films. Small, 2019,15(7):1-7. |
[28] | SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft. Applied Thermal Engineering, 2003,23(9):1055-1065. |
[29] | LI H, XIE K, PAN Y, et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synthetic Metals, 2009,159(13):1386-1388. |
[30] | LOUET C, CANTIN S, DUDON J P, et al. A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Solar Energy Materials and Solar Cells, 2015,143:141-151. |
[31] | ZHANG L P, WANG B, LI X B, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 2019,7(32):9878-9891. |
[32] | MODINE F A, SMITH D Y. Approximate formulas for the amplitude and the phase of the infrared reflectance of a conductor. Journal of The Optical Society of America A-Optics Image Science and Vision, 1984,1(12):1171-1174. |
[33] | HALE J S, WOOLLAM J A. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999,339(1):174-180. |
[34] | FRANKE E B, TRIMBLE C L, SCHUBERT M, et al. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Applied Physics Letters, 2000,77(7):930-932. |
[35] | BESSIERE A, MARCEL C, MORCRETTE M, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 2002,91(3):1589-1594. |
[36] | SAUVET K, SAUQUES L, ROUGIER A, et al. IR electrochromic WO3 thin films: from optimization to devices. Solar Energy Mater. Solar Cells, 2009,93:2045-2049. |
[37] | SAUVET K, SAUQUES L, ROUGIER A, et al. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. Journal of Physics and Chemistry of Solids, 2010,71:696-699. |
[38] | KISLOV N, GROGER H, PONNAPPAN R. All-solid-state electrochromic variable emittance coatings for thermal management in space. AIP Conference Proceedings, 2003,654(1):172-179. |
[39] | KISLOV N, GROGER H, PONNAPPAN R, et al. Electrochromic variable emittance devices on silicon wafer for spacecraft thermal control. AIP Conference Proceedings, 2004,699(1):112-118. |
[40] | DEMIRYONT H, MOOREHEAD D. Electrochromic emissivity modulator for spacecraft thermal management. Solar Energy Materials and Solar Cells, 2009,93(12):2075-2078. |
[41] | HUANG Y S, ZHANG Y Z, ZENG X T, et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics Applied Surface Science, 2002,202(1):104-109. |
[42] | LARSSON A L, NIKLASSON G A. Infrared emittance modulation of all-thin-film electrochromic devices. Materials Letters, 2004,58(20):2517-2520. |
[43] | ZHANG X, TIAN Y L, LI W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films Solar Energy Materials and Solar Cells, 2019,200:109916. |
[44] |
SALIHOGLU O, UZLU H B, YAKAR O, et al. Graphene-based adaptive thermal camouflage. Nano Letters, 2018,18(7):4541-4548.
DOI URL PMID |
[45] | MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 2018,28(36):1-8. |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||