Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 497-501.DOI: 10.15541/jim20200421
• RESEARCH ARTICLE • Previous Articles Next Articles
ZHENG Qifan(), LI Chaoqun, BAN Xiaokuan, ZHAN Zhongliang, CHEN Chusheng()
Received:
2020-07-30
Revised:
2020-09-05
Published:
2021-05-20
Online:
2021-04-19
Contact:
CHEN Chusheng, professor. E-mail: ccsm@ustc.edu.cn
About author:
ZHENG Qifan(1995-), male, Master candidate. E-mail:zhengqf@mail.ustc.edu.cn
Supported by:
CLC Number:
ZHENG Qifan, LI Chaoqun, BAN Xiaokuan, ZHAN Zhongliang, CHEN Chusheng. Preparation and Property of GDC-LSF Dual-phase Composite Membrane with Straight Pores and Sandwich Structure[J]. Journal of Inorganic Materials, 2021, 36(5): 497-501.
Composition | Slurry 1 (Top) | Slurry 2 (Bottom) |
---|---|---|
GDC | 35.92 | - |
LSF | 20.58 | - |
Graphite | 13.50 | 60.00 |
NMP | 24.83 | 33.10 |
PESf | 4.14 | 5.52 |
PVP | 1.03 | 1.38 |
Table 1 Composition of the slurries for the support prepared by phase-inversion tape casting (wt%)
Composition | Slurry 1 (Top) | Slurry 2 (Bottom) |
---|---|---|
GDC | 35.92 | - |
LSF | 20.58 | - |
Graphite | 13.50 | 60.00 |
NMP | 24.83 | 33.10 |
PESf | 4.14 | 5.52 |
PVP | 1.03 | 1.38 |
Composition | Weight percentage |
---|---|
GDC | 36.33 |
LSF | 20.80 |
Ethanol | 16.80 |
2-Butanone | 12.60 |
TEOA | 1.72 |
PVB | 5.75 |
PEG-400 | 3.00 |
DBP | 3.00 |
Table 2 Composition of the slurries for the dense layer prepared by conventional tape casting (wt%)
Composition | Weight percentage |
---|---|
GDC | 36.33 |
LSF | 20.80 |
Ethanol | 16.80 |
2-Butanone | 12.60 |
TEOA | 1.72 |
PVB | 5.75 |
PEG-400 | 3.00 |
DBP | 3.00 |
Fig. 4 SEM images of GDC-LSF membrane (a) Cross-section of the support green tape; (b) Cross-section of the sintered membrane; (c) Top-view of the support; (d) Magnified view of the NNO nano-particles in the support
Fig. 6 Electrical conductivity relaxation curves (normalized conductivity as a function of time) of GDC-LSF bar at 850 ℃ (a) and Arrhenius plots of the surface exchange coefficient at 800-900 ℃ (b) (1 bar=105 Pa)
[1] | DYER P N, RICHARDS R E, RUSSEK S L, et al. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics, 2000,134(1/2):21-33. |
[2] | TONZIELLO J, VELLINI M. Oxygen production technologies for IGCC power plants with CO2 capture. Energy Procedia, 2011,4:637-644. |
[3] | ZENG Q, ZUO Y B, FAN C G, et al. CO2-tolerant oxygen separation membranes targeting CO2 capture application. Journal of Membrane Science, 2009,335(1/2):140-144. |
[4] | MENG Y Q, HE W, LI X X, et al. Asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δ membrane with reduced concentration polarization prepared by phase-inversion tape casting and warm pressing. Journal of Membrane Science, 2017,533:11-18. |
[5] | SHAO Z P, YANG W S, CONG Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. Journal of Membrane Science, 2000,172(1/2):177-188. |
[6] | YI J X, SCHROEDER M, WEIRICH T, et al. Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design. Chemistry of Materials, 2010,22(23):6246-6253. |
[7] | LIU J J, LIU T, WANG W D, et al. Zr0.84Y0.16O1.92- La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase composite hollow fiber membrane targeting chemical reactor applications. Journal of Membrane Science, 2012,389:435-440. |
[8] | KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al. Oxygen transport in Ce0.8Gd0.2O2-δ-based composite membranes. Solid State Ionics, 2003,160(3/4):247-258. |
[9] |
KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al. Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.7Sr0.3MnO3-δ composite membranes. Journal of The Electrochemical Society, 2000,147(7):2814-2821.
DOI URL |
[10] | HONG L, CHEN X F, CAO Z D. Preparation of a perovskite La0.2Sr0.8CoO3-x membrane on a porous MgO substrate. Journal of the European Ceramic Society, 2001,21(12):2207-2215. |
[11] |
IKEGUCHI M, ISHII K, SEKINE Y, et al. Improving oxygen permeability in SrFeCo0.5Ox asymmetric membranes by modifying support-layer porous structure. Materials Letters, 2005,59(11):1356-1360.
DOI URL |
[12] |
BÜCHLER O, SERRA J M, MEULENBERG W A, et al. Preparation and properties of thin La1-xSrxCo1-yFeyO3-δ perovskitic membranes supported on tailored ceramic substrates. Solid State Ionics, 2017,178(1/2):91-99.
DOI URL |
[13] |
CHANG X F, ZHANG C, JIN W Q, et al. Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes. Journal of Membrane Science, 2006,285(1):232-238.
DOI URL |
[14] |
FANG W, STEINBACH F, CAO Z W, et al. A highly efficient sandwich-like symmetrical dual-phase oxygen-transporting membrane reactor for hydrogen production by water splitting. Angewandte Chemie International Edition, 2016,55(30):8648-8651.
URL PMID |
[15] |
LIN Q Y, LIN J, LIU T, et al. Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces. Solid State Ionics, 2018,323:130-135.
DOI URL |
[16] |
CHENG J G, ZHA S W, HUANG J, et al. Sintering behavior and electrical conductivity of Ce0.9Gd0.1O1.95 powder prepared by the gel-casting process. Materials Chemistry and Physics, 2003,78(3):791-795.
DOI URL |
[17] |
STEELE B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃. Solid State Ionics, 2000,129(1-4):95-110.
DOI URL |
[18] |
LUO H X, EFIMOV K, JIANG H Q, et al. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011,50(3):759-763.
URL PMID |
[1] | ZHANG Bingyu,WANG ling,WANG Xiaomeng,QIU Haipeng. Effect of Precursors on Impregnation Behaviors of C/SiC Composites [J]. Journal of Inorganic Materials, 2020, 35(9): 1017-1022. |
[2] | CHENG Liang, LUO Ling-Hong, SHI Ji-Jun, SUN Liang-Liang, XU Xu, WU Ye-Fan, HU Jia-Xing. Ni/YSZ Anode Impregnated La2O3 on Anti-carbon Deposition of SOFC Cell [J]. Journal of Inorganic Materials, 2017, 32(3): 241-246. |
[3] | ZHAO Xiao-Hong, WANG Yong, LIU Li-Min, Li Bin. Preparation and Electrochemical Performance of a Novel Perovskite Anode La0.9Ca0.1Fe0.9Nb0.1O3-δ for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2017, 32(11): 1188-1194. |
[4] | YAO Guang-Yuan, HUANG Wei-Xin, LI Chun-Quan, SUN Zhi-Ming, ZHENG Shui-Lin. Preparation and Photocatalytic Performance of g-C3N4/Kaolinite Composite [J]. Journal of Inorganic Materials, 2016, 31(9): 929-934. |
[5] | WANG Dan-Jun, SHEN Hui-Dong, GUO Li, HE Xiao-Mei, ZHANG Jie, FU Feng. Synthesis of Diatomite/g-C3N4 Composite with Enhanced Visible-light-responsive Photocatalytic Activity [J]. Journal of Inorganic Materials, 2016, 31(8): 881-889. |
[6] | LIU Ya-Di, YUAN Chun, ZHOU Yu-Cun, ZOU Jie, XIN Xian-Shuang, WANG Shao-Rong. Composite Anodes with Ni Impregnated LST-SSZ for Direct Methane Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2014, 29(11): 1121-1126. |
[7] | XIE Lin,CHEN Xiao-Feng,ZHAO Na-Ru,GUO Chang-Liang. Study on Porous Bioglass Scaffold Prepared by Dipping with Polymer Foams [J]. Journal of Inorganic Materials, 2009, 24(2): 280-284. |
[8] | TAN Xiao-Yao,MENG Bo,YANG Nai-Tao. Preparation and Characteristics of Ceramic Hollow Fiber Membranes for Oxygen Permeation [J]. Journal of Inorganic Materials, 2006, 21(1): 245-249. |
[9] | SUN Le-Min,LI He-Jun,ZHANG Shou-Yang. Microstructural Characteristics of Pitch-Based Carbon-Carbon Composites [J]. Journal of Inorganic Materials, 2000, 15(6): 1111-1116. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||