Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 492-496.DOI: 10.15541/jim20200346
Special Issue: 【虚拟专辑】计算材料
• RESEARCH ARTICLE • Previous Articles Next Articles
XIANG Hui1,2(), QUAN Hui1, HU Yiyuan1, ZHAO Weiqian1, XU Bo2,3, YIN Jiang2
Received:
2020-06-22
Revised:
2020-09-30
Published:
2021-05-20
Online:
2021-04-19
About author:
XIANG Hui(1986-), female, associate professor. E-mail:hxiang0717@163.com
Supported by:
CLC Number:
XIANG Hui, QUAN Hui, HU Yiyuan, ZHAO Weiqian, XU Bo, YIN Jiang. Piezoelectricity of Graphene-like Monolayer ZnO and GaN[J]. Journal of Inorganic Materials, 2021, 36(5): 492-496.
Fig. 1 Crystal structure and phonon spectra of monolayer g-ZnO and g-GaN The top view (a) and side view (b) of monolayers g-ZnO and g-GaN, where oxygen and nitrogen atoms are blue, while zinc and gallium atoms are gray. The axes and direction of piezoelectric polarization are labeled as P. The phonon dispersion calculations for monolayers g-ZnO (c) and g-GaN (d) are also depicted, respectivelyColorful figures are available on website
Material | Clamped-ion | Relaxed-ion | ||||
---|---|---|---|---|---|---|
C11 | C12 | Δ | C11 | C12 | Δ | |
g-ZnO | 109 | 35 | 75 | 86 | 57 | 29 |
g-GaN | 157 | 37 | 120 | 135 | 58 | 77 |
h-BN[ | 300 | 53 | 247 | 291 | 62 | 229 |
Graphene[ | - | - | - | 358 | 60 | 298 |
Table 1 Elastic stiffness constants C11 and C12 (N·m-1) of Clamped-ion and Relaxed-ion components for monolayers g-ZnO and g-GaN) against that of h-BN and graphene (Δ= C11 - C12)
Material | Clamped-ion | Relaxed-ion | ||||
---|---|---|---|---|---|---|
C11 | C12 | Δ | C11 | C12 | Δ | |
g-ZnO | 109 | 35 | 75 | 86 | 57 | 29 |
g-GaN | 157 | 37 | 120 | 135 | 58 | 77 |
h-BN[ | 300 | 53 | 247 | 291 | 62 | 229 |
Graphene[ | - | - | - | 358 | 60 | 298 |
Material | Clamped-ion | Relaxed-ion | ||
---|---|---|---|---|
e11 | d11 | e11 | d11 | |
g-ZnO | 1.7 | 2.3 | 2.7 | 9.4 |
g-GaN | 2.4 | 2.0 | 1.7 | 2.2 |
Bulk ZnO[ | - | - | - | 9.9 (d33) |
Bulk GaN[ | - | - | - | 3.1 (d33) |
h-BN[ | 3.7 | 1.5 | 1.4 | 0.6 |
Table 2 Calculated Clamped- and Relaxed-ion e11 (×10-10, C·m-1) and d11 (pm·V-1) of g-ZnO and g-GaN against piezoelectric coefficients of wurtzite bulk and graphene-like monolayer BN (h-BN)
Material | Clamped-ion | Relaxed-ion | ||
---|---|---|---|---|
e11 | d11 | e11 | d11 | |
g-ZnO | 1.7 | 2.3 | 2.7 | 9.4 |
g-GaN | 2.4 | 2.0 | 1.7 | 2.2 |
Bulk ZnO[ | - | - | - | 9.9 (d33) |
Bulk GaN[ | - | - | - | 3.1 (d33) |
h-BN[ | 3.7 | 1.5 | 1.4 | 0.6 |
Fig. 4 Total densities of states (TDOS) and partial DOS (PDOS) of monolayers g-ZnO (a) and g-GaN (b) under the conditions of 1% tensile strain along the armchair direction Colorful figures are available on website
[1] |
SAITO Y, TAKAO H, TANI T, et al. Lead-free piezoceramics. Nature, 2004,432(7013):84-87.
DOI URL PMID |
[2] | ZHAO M H, WANG Z L, MAO S X. Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 2004,4(4):587-590. |
[3] | WANG Z L. Nanostructures of zinc oxide. Materials Today, 2004,7(6):26-33. |
[4] |
WU W, WANG L, LI Y, et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature, 2014,514:470.
URL PMID |
[5] |
DAI M, WANG Z, WANG F, et al. Two-dimensional van der Waals materials with aligned in-plane polarization and large piezoelectric effect for self-powered piezoelectric sensors. Nano Letters, 2019,19(8):5410-5416.
DOI URL PMID |
[6] | DUERLOO K A N, ONG M T, REED E J. Intrinsic piezoelectricity in two-dimensional materials. The Journal of Physical Chemistry Letters, 2012,3(19):2871-2876. |
[7] | LI W, LI J. Piezoelectricity in two-dimensional group-III monochalcogenides. Nano Research, 2015,8(12):3796-3802. |
[8] | PRODHOMME P Y, BEYA-WAKATA A, BESTER G. Nonlinear piezoelectricity in wurtzite semiconductors. Physical Review B, 2013,88(12):121304. |
[9] | JANOTTI A, VAN DE WALLE C G. Fundamentals of zinc oxide as a semiconductor. Reports on Progress in Physics, 2009,72(12):126501. |
[10] | STRITE S, MORKOÇ H. GaN. AlN, and InN: a review. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 1992,10(4):1237-1266. |
[11] |
ZHANG J, WANG C, BOWEN C. Piezoelectric effects and electromechanical theories at the nanoscale. Nanoscale, 2014,6(22):13314-13327.
URL PMID |
[12] |
ZHOU J, GU Y, FEI P,et al. Flexible piezotronic strain sensor. Nano Letters, 2008,8(9):3035-3040.
DOI URL PMID |
[13] |
AGRAWAL R, ESPINOSA H D. Giant piezoelectric size effects in zinc oxide and gallium nitride nanowires: a first principles investigation. Nano Letters, 2011,11(2):786-790.
DOI URL PMID |
[14] |
MOGULKOC A, MOGULKOC Y, MODARRESI M, et al. Electronic structure and optical properties of novel monolayer gallium nitride and boron phosphide heterobilayers. Physical Chemistry Chemical Physics, 2018,20:28124-28134.
DOI URL PMID |
[15] |
TUSCHE C, MEYERHEIM H L, KIRSCHNER J. Observation of depolarized ZnO(0001) monolayers: formation of unreconstructed planar sheets. Physical Review Letters, 2007,99(2):026102.
DOI URL PMID |
[16] | TOPSAKAL M, CAHANGIROV S, BEKAROGLU E, et al. First-principles study of zinc oxide honeycomb structures. Physical Review B, 2009,80(23):235119. |
[17] | SHU H, NIU X, DING X, et al. Effects of strain and surface modificaion on stability, electronic and optical properties of GaN monolayer. Applied Surface Science, 2019,479:475-481. |
[18] | KRESSE G, FURTHMÜLLER J. Efficiency ofab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science, 1996,6(1):15-50. |
[19] | KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 1996,54(16):11169. |
[20] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996,77(18):3865.
DOI URL PMID |
[21] | VANDERBILT D. Berry-phase theory of proper piezoelectric response. Journal of Physics and Chemistry of Solids, 2000,61(2):147-151. |
[22] | HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened Coulomb potential. The Journal of Chemical Physics, 2003,118(18):8207-8215. |
[23] |
HONG H K, JO J, HWANG D, et al. Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Letters, 2017,17:120-127.
DOI URL PMID |
[24] | PENG Q, LIANG C, JI W, et al. A first principles investigation of the mechanical properties of g-ZnO: the graphene-like hexagonal zinc oxide monolayer. Computational Materials Science, 2013,68:320-324. |
[25] | PENG Q, LIANG C, JI W, et al. Mechanical properties of g-GaN: a first principles study. Applied Physics A, 2013,113(2):483-490. |
[26] | WEI X, FRAGNEAUD B, MARIANETTI C A, et al. Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B, 2009,80(20):205407. |
[27] | LUENG C M, CHAN H L W, SURYA C, et al. Piezoelectric coefficient of aluminum nitride and gallium nitride. Journal of Applied Physics, 2000,88(9):5360-5363. |
[28] |
XU S, QIN Y, XU C, et al. Self-powered nanowire devices. Nature Nanotechnology, 2010,5(5):366-373.
DOI URL PMID |
[1] | MA Xiaosen, ZHANG Lichen, LIU Yanchao, WANG Quanhua, ZHENG Jiajun, LI Ruifeng. 13X@SiO2: Synthesis and Toluene Adsorption [J]. Journal of Inorganic Materials, 2023, 38(5): 537-543. |
[2] | WANG Hongning, HUANG Li, QING Jiang, MA Tengzhou, HUANG Weiqiu, CHEN Ruoyu. Mesoporous Organic-inorganic Hybrid Siliceous Hollow Spheres: Synthesis and VOCs Adsorption [J]. Journal of Inorganic Materials, 2022, 37(9): 991-1000. |
[3] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[4] | HONG Jiahui, MA Ran, WU Yunchao, WEN Tao, AI Yuejie. CoNx/g-C3N4 Nanomaterials Preparation by MOFs Self-sacrificing Template Method for Efficient Photocatalytic Reduction of U(VI) [J]. Journal of Inorganic Materials, 2022, 37(7): 741-749. |
[5] | WEI Ziqin, XIA Xiang, LI Qin, LI Guorong, CHANG Jiang. Preparation and Properties of Barium Titanate/Calcium Silicate Composite Bioactive Piezoelectric Ceramics [J]. Journal of Inorganic Materials, 2022, 37(6): 617-622. |
[6] | CAO Zhijun, LI Zaijun. Ruthenium-biocarbon Mimic Enzyme: Synthesis and Application in Colorimetric Detection of Pesticide Chlorpyrifos [J]. Journal of Inorganic Materials, 2022, 37(5): 554-560. |
[7] | SHI Jixiang, ZHAI Dong, ZHU Min, ZHU Yufang. Preparation and Characterization of Bioactive Glass-Manganese Dioxide Composite Scaffolds [J]. Journal of Inorganic Materials, 2022, 37(4): 427-435. |
[8] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[9] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[10] | ZHANG Wenjun, ZHAO Xueying, LÜ Jiangwei, QU Youpeng. Progresses on Hollow Periodic Mesoporous Organosilicas: Preparation and Application in Tumor Therapy [J]. Journal of Inorganic Materials, 2022, 37(11): 1192-1202. |
[11] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[12] | LIU Yunpeng, SHENG Weifan, WU Zhonghua. Synchrotron Radiation and Its Applications Progress in Inorganic Materials [J]. Journal of Inorganic Materials, 2021, 36(9): 901-918. |
[13] | GUO Yinben, CHEN Zixi, WANG Hongzhi, ZHANG Qinghong. Progress of Inorganic Filler Based Composite Films for Triboelectric Nanogenerators [J]. Journal of Inorganic Materials, 2021, 36(9): 919-928. |
[14] | ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials [J]. Journal of Inorganic Materials, 2021, 36(5): 451-460. |
[15] | WANG Tianyue, WANG Mengying, HUANG Qingjiao, YANG Jiaming, WANG Shunhua, DIAO Xungang. Preparation of Lithium Titanate Thin Film for Electrochromic Smart Window by Sol-Gel Spin Coating Method [J]. Journal of Inorganic Materials, 2021, 36(5): 471-478. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||