Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (3): 277-282.DOI: 10.15541/jim20200254
Special Issue: 【信息功能】电介质材料; 【虚拟专辑】钙钛矿材料(2020~2021); 【能源环境】钙钛矿
• RESEARCH PAPER • Previous Articles Next Articles
DONG Zhengming1,2(), LI Xiu2,3, CHEN Chen2(), CAO Minghe1(), YI Zhiguo2
Received:
2020-05-13
Revised:
2020-09-04
Published:
2021-03-20
Online:
2020-10-10
Contact:
CAO Minghe, professor. E-mail: caominghe@whut.edu.cnAbout author:
DONG Zhengming(1996-), male, Master candidate. E-mail: dongzhengming_yzu@163.com
Supported by:
CLC Number:
DONG Zhengming, LI Xiu, CHEN Chen, CAO Minghe, YI Zhiguo. Photostriction of NBT-BNT Ceramics[J]. Journal of Inorganic Materials, 2021, 36(3): 277-282.
Fig. 3 Photostrictive performance of the NBT-BNT sample under different light conditions (shaded part indicates laser on state) (a), Stability of the photostrictive properties of the NBT-BNT sample under 5 kW/cm2 (b) and 15 kW/cm2 (c), photostriction coefficient of NBT-BNT sample under different light conditions (d), temperature change of the NBT-BNT sample (e) corresponding to Fig.(a), and thermal expansion curve of the NBT-BNT sample (f)
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
Table 1 Comparison of the photostrictive performances of the materials in literature and this work
Compounds | Sample thickness | Illumination wavelength/nm | Light irradiance | λmax/% | η/(m3·W-1) |
---|---|---|---|---|---|
PLZT ceramics[ | 0.5 mm | 365 | 150 W/m2 | 0.01 | 3.3×10-10 |
BiFeO3 crystal[ | 90 µm | 365 | 326 W/m2 | 0.003 | 8.2×10-12 |
BiFeO3 film[ | 35 nm | 400 | 2 mJ/cm2 | 0.46 | 4×10-25 |
Silicon crystal[ | 0.5 mm | 248 | 127 mJ/cm2 | -6.4×10-4 | -3.7×10-20 |
Nematic elastomers[ | - | 365 | - | 20 | - |
SrRuO3 film[ | 40 nm | 532 | 62.5 W/cm2 | 1.12 | 7×10-16 |
CH3NH3PbBr3 crystal[ | 2.7 mm | 532 | 60 W/cm2 | -1.25 | -5.6×10-11 |
NBT-BNT | 0.2 mm | 405 | 25 kW/m2 | 0.21 | 1.68×10-11 |
0.2 mm | 520 | 25 kW/m2 | 0.13 | 1.10×10-11 | |
0.2 mm | 655 | 25 kW/m2 | 0.11 | 9.12×10-12 |
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
Table 2 The displacement Δd/d of crystal planes of NBT- BNT samples under laser irradiation
Wavelength /nm | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
405 | 0.0008 | 0.0003 | 0.0001 | 0.0003 | 0.0001 | 0.0005 |
520 | 0.0015 | 0.0005 | 0.0002 | 0.0002 | 0.0001 | 0.0003 |
655 | 0.0016 | 0.0004 | 0.0003 | 0.0002 | 0.0002 | 0.0003 |
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
Table 3 The displacement Δd/d of crystal planes of NBT- BNT samples at different temperatures
Temperature /℃ | Δd/d | |||||
---|---|---|---|---|---|---|
(100) | (110) | (111) | (200) | (211) | (220) | |
50 | 0.0004 | 0.0001 | 0.0003 | 0.0001 | 0.0005 | 0.0009 |
100 | 0.0008 | 0.0004 | 0.0004 | 0.0004 | 0.001 | 0.0008 |
150 | 0.0009 | 0.0006 | 0.0006 | 0.0005 | 0.0012 | 0.0011 |
[1] |
FIGIELSKI T. Photostriction effect in germanium. Physica Status Solidi (b), 1961,1(4):306-316.
DOI URL |
[2] | UCHINO K, AIZAWA M. Photostrictive actuator using PLZT ceramics. Japanese Journal of Applied Physics, 1985,24(S3):139. |
[3] |
KUNDYS B, VIRET M, COLSON D, et al. Light-induced size changes in BiFeO3 crystals. Nature Materials, 2010,9:803.
DOI URL PMID |
[4] | KUNDYS B. Photostrictive materials. Applied Physics Reviews, 2015,2(1):011301. |
[5] | WEI T C, WANG H P, LI T Y, et al. Photostriction of CH3NH3PbBr3 perovskite crystals. Advanced Materials, 2017, 29(35):1701789. |
[6] |
WEI T C, WANG H P, LIU H J, et al. Photostriction of strontium ruthenate. Nature Communications, 2017,8:15018.
DOI URL PMID |
[7] |
UCHINO K, AIZAWA M, NOMURA L S. Photostrictive effect in (Pb, La)(Zr, Ti)O3. Ferroelectrics, 1985,64(1):199-208.
DOI URL |
[8] |
SCHICK D, HERZOG M, WEN H, et al. Localized excited charge carriers generate ultrafast inhomogeneous strain in the multiferroic BiFeO3. Physical Review Letters, 2014,112(9):097602.
DOI URL PMID |
[9] |
KUNDYS B, VIRET M, MENY C, et al. Wavelength dependence of photoinduced deformation in BiFeO3. Physical Review B, 2012,85(9):092301.
DOI URL |
[10] |
LAGOWSKI J, GATOS H C. Photomechanical effect in noncentrosymmetric semiconductors-CdS. Applied Physics Letters, 1972,20(1):14-16.
DOI URL |
[11] |
BUSCHERT J R, COLELLA R. Photostriction effect in silicon observed by time-resolved X-ray diffraction. Solid State Communications, 1991,80(6):419-422.
DOI URL |
[12] |
GAYATHRI S, SRIDEVI S, SINGH G, et al. Investigation of fast and sizeable photostriction effect in tellurium thin films using fiber Bragg grating sensors. Sensors and Actuators A-Physical, 2018,279:688-693.
DOI URL |
[13] |
YANG J C, LIOU Y D, TZENG W Y, et al. Ultrafast giant photostriction of epitaxial strontium iridate film with superior endurance. Nano Letters, 2018,18(12):7742-7748.
DOI URL PMID |
[14] |
PAILLARD C, XU B, DKHIL B, et al. Photostriction in ferroelectrics from density functional theory. Physical Review Letters, 2016,116(24):247401.
DOI URL PMID |
[15] |
YU Y, NAKANO M, IKEDA T. Directed bending of a polymer film by light. Nature, 2003,425(6954):145-145.
DOI URL PMID |
[16] |
WHITE T J, BROER D J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nature Materials, 2015,14:1087.
DOI URL PMID |
[17] |
YU Y. A light-fuelled wave machine. Nature, 2017,546:604.
DOI URL PMID |
[18] | ZHANG Z, REMSING R C, CHAKRABORTY H, et al. Light- induced dilation in nanosheets of charge-transfer complexes. Proceedings of the National Academy of Sciences, 2018,115(15):3776. |
[19] | MIRVAKILI S M, HUNTER I W. Artificial muscles: mechanisms, applications, and challenges. Advanced Materials, 2018,30(6):1704407. |
[20] |
TZOU H S, CHOU C S. Nonlinear opto-electromechanics and photodeformation of optical actuators. Smart Materials and Structures, 1996,5(2):230-235.
DOI URL |
[21] | UCHINO K. New applications of photostrictive ferroics. Materials Research Innovations, 1997,1(3):163-168. |
[22] |
POOSANAAS P, TONOOKA K, UCHINO K. Photostrictive actuators. Mechatronics, 2000,10(4):467-487.
DOI URL |
[23] | ZENG H, WASYLCZYK P, WIERSMA D S, et al. Light robots: bridging the gap between microrobotics and photomechanics in soft materials. Advanced Materials, 2018,30(24):1703554. |
[24] | WANG Z, LI K, HE Q, et al. A light-powered ultralight tensegrity robot with high deformability and load capacity. Advanced Materials, 2019,31(7):1806849. |
[25] |
MENG Z Y, KUMAR U, CROSS L E. Electrostriction in lead lanthanum zirconate-titanate ceramics. Journal of the American Ceramic Society, 1985,68(8):459-462.
DOI URL |
[26] | TAKAGI K, KIKUCHI S, LI J F, et al. Ferroelectric and photostrictive properties of fine-grained PLZT ceramics derived from mechanical alloying. Journal of the American Ceramic Society, 2004,87(8):1477-1482. |
[27] | MATZEN S, GUILLEMOT L, MAROUTIAN T, et al. Tuning ultrafast photoinduced strain in ferroelectric-based devices. Advanced Electronic Materials, 2019,5(6):1800709. |
[28] | XIAO H, DONG W, GUO Y, et al. Design for highly piezoelectric and visible/near-infrared photoresponsive perovskite oxides. Advanced Materials, 2019,31(4):1805802 |
[29] |
KUNDYS B, BUKHANTSEV Y, VASILIEV S, et al. Three terminal capacitance technique for magnetostriction and thermal expansion measurements. Review of Scientific Instruments, 2004,75(6):2192-2196.
DOI URL |
[30] |
FINKELMANN H, NISHIKAWA E, PEREIRA G G, et al. A new opto-mechanical effect in solids. Physical Review Letters, 2001,87(1):015501.
DOI URL PMID |
[31] |
CHEN C, LI X, LU T, et al. Reinvestigation of the photostrictive effect in lanthanum-modified lead zirconate titanate ferroelectrics. Journal of the American Ceramic Society, 2020,103(8):4074-4082.
DOI URL |
[1] | ZHANG Wanwen, LUO Jianqiang, LIU Shujuan, MA Jianguo, ZHANG Xiaoping, YANG Songwang. Zirconia Spacer: Preparation by Low Temperature Spray-coating and Application in Triple-layer Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2023, 38(2): 213-218. |
[2] | LIU Qi, ZHU Can, XIE Guizhen, WANG Jun, ZHANG Dongming, SHAO Gangqin. Optical Absorption and Photoluminescence Spectra of Ce-doped SrMgF4 Polycrystalline with Superlattice Structure [J]. Journal of Inorganic Materials, 2022, 37(8): 897-902. |
[3] | HUANG Zhihang, TENG Guanhongwei, TIE Peng, FAN Desong. Electrochromic Property of Perovskite Ceramic Films [J]. Journal of Inorganic Materials, 2022, 37(6): 611-616. |
[4] | JIAO Boxin, LIU Xingchong, QUAN Ziwei, PENG Yongshan, ZHOU Ruonan, LI Haimin. Performance of Perovskite solar cells Doped with L-arginine [J]. Journal of Inorganic Materials, 2022, 37(6): 669-675. |
[5] | LIN Aming, SUN Yiyang. Stability of Low-index Surfaces of Cs2SnI6 Studied by First-principles Calculations [J]. Journal of Inorganic Materials, 2022, 37(6): 691-696. |
[6] | ZHANG Guoqing, QIN Peng, HUANG Fuqiang. Reversible Conversion between Space-confined Lead Ions and Perovskite Nanocrystals for Confidential Information Storage [J]. Journal of Inorganic Materials, 2022, 37(4): 445-451. |
[7] | ZHANG Fengjuan, HAN Boning, ZENG Haibo. Perovskite Quantum Dot Photovoltaic and Luminescent Concentrator Cells: Current Status and Challenges [J]. Journal of Inorganic Materials, 2022, 37(2): 117-128. |
[8] | MING Yue, HU Yue, MEI Anyi, RONG Yaoguang, HAN Hongwei. Application of Lead Acetate Additive for Printable Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2022, 37(2): 197-203. |
[9] | WANG Wanhai, ZHOU Jie, TANG Weihua. Passivation Strategies of Perovskite Film Defects for Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(2): 129-139. |
[10] | JIAO Zhixiang, JIA Fanhao, WANG Yongchen, CHEN Jianguo, REN Wei, CHENG Jinrong. Curie Temperature Prediction of BiFeO3-PbTiO3-BaTiO3 Solid Solution Based on Machine Learning [J]. Journal of Inorganic Materials, 2022, 37(12): 1321-1328. |
[11] | XU Tingting, LI Yunyun, WANG Qian, WANG Jingkang, REN Guohao, SUN Dazhi, WU Yuntao. Centimeter-sized Cs3Cu2I5 Single Crystal: Synthesized by Low-cost Solution Method and Optical and Scintillation Properties [J]. Journal of Inorganic Materials, 2022, 37(10): 1129-1134. |
[12] | YANG Xinyue, DONG Qingshun, ZHAO Weidong, SHI Yantao. 4-Chlorobenzylamine-based 2D/3D Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2022, 37(1): 72-78. |
[13] | LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell [J]. Journal of Inorganic Materials, 2021, 36(6): 629-636. |
[14] | ZHANG Xiaoyan, LIU Xinyue, YAN Jinhua, GU Yaohang, QI Xiwei. Preparation and Property of High Entropy (La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3 Perovskite Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 379-385. |
[15] | WANG Yanxiang, GAO Peiyang, FAN Xueyun, LI Jiake, GUO Pingchun, HUANG Liqun, SUN Jian. Effect of SnO2 Annealing Temperature on the Performance of Perovskite Solar Cells [J]. Journal of Inorganic Materials, 2021, 36(2): 168-174. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||