Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (5): 507-512.DOI: 10.15541/jim20200358
Special Issue: 【虚拟专辑】钙钛矿材料(2020~2021); 【能源环境】量子点; 【能源环境】钙钛矿
• RESEARCH ARTICLE • Previous Articles Next Articles
XIAO Xiang(), GUO Shaoke, DING Cheng, ZHANG Zhijie(), HUANG Hairui, XU Jiayue()
Received:
2020-06-30
Revised:
2020-08-27
Published:
2021-05-20
Online:
2021-04-19
Contact:
ZHANG Zhijie, associate professor. E-mail: zjzhang@sit.edu.cn; XU Jiayue, professor. E-mail: xujiayue@sit.edu.cn
About author:
XIAO Xiang(1995-), male, Master candidate. E-mail:18856267707@163.com
Supported by:
CLC Number:
XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst[J]. Journal of Inorganic Materials, 2021, 36(5): 507-512.
Fig. 5 (a) Comparison of photocatalytic activities of CsPbBr3, TiO2 and CsPbBr3@TiO2 for degradation of Rhodamine B under visible light irradiation; (b) TEM image of recycled CsPbBr3@TiO2 after the degradation experiment; (c) Comparison of PL spectra of CsPbBr3@TiO2 before and after the degradation experiment; (d) Cycle runs of the photocatalytic degradation of RhB over CsPbBr3@TiO2
[1] |
ZHOU H, CHEN Q, LI G, et al. Interface engineering of highly efficient perovskite solar cells. Science, 2014,345(6196):542-546.
DOI URL PMID |
[2] | LÜ W Z, LI L, XU M C, et al. Improving the stability of metal halide perovskite quantum dots by encapsulation. Advanced Materials, 2019,31(28):1900682. |
[3] | LI X M, WU Y, ZHANG S L, et al. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016,26(15):2435-2445. |
[4] | LIUY , LI F S, LI Q Q, et al. Emissions at perovskite quantum dot/film interface with halide anion exchange. ACS Photonics, 2018,5(11):4504-4512. |
[5] | PARK S, CHANG W J, LEE C W, et al. Photocatalytic gydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nature Energy, 2016,2(1):16185. |
[6] |
HA S T, SU R, XING J, et al. Metal halide perovskite nanomaterials: synthesis and applications. Chemical Science, 2017,8(4):2522-2536.
URL PMID |
[7] | LI X, CAO F, YU D, et al. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small, 2017,13(9):1603996. |
[8] |
AKKERMAN Q A, RAINO G, KOVALENKO M V, et al. Genesis challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nature Materials, 2018,17(5):394.
URL PMID |
[9] | BAI S, YUAN Z, GAO F, et al. Colloidal metal halide perovskite nanocrystals: synthesis characterization and applications. Journal of Materials Chemistry C, 2016,4(18):3898-3904. |
[10] | ATOURKI L, VEGA E, MAN B, et al. Role of the chemical substitution on the structural and luminescence properties of the mixed halide perovskite thin MAPbI3-xBrx(0≤x≤1) films. Applied Surface Science, 2016,371:112-117. |
[11] |
OTTO T, MULLER M, MUNDRA P, et al. Colloidal nanocrystals embedded in macrocrystals: robustness, photostability, and color purity. Nano Letters, 2012,12(10):5348-5354.
URL PMID |
[12] |
HANSKE C, HILL E H, VILA-LIARTE D, et al. Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Applied Materials & Interfaces, 2019,11(12):11763-11771.
DOI URL PMID |
[13] |
SHAO H, BAI X, PAN G, et al. Highly efficient and stable blue-emitting CsPbBr3@SiO2 nanospheres through low temperature synthesis for nanoprinting and wled. Nanotechnology, 2018,29(28):285706.
URL PMID |
[14] | LOIUDICE A, SARIS S, OVEISI E, et al. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water light and heat. Angewandte Chemie International Edition, 2017,56(53):10696-10701. |
[15] |
LIAO J F, XU Y F, WANG X D, et al. CsPbBr3 nanocrystal/MO2(M=Si, Ti, Sn) composites: insight into charge-carrier dynamics and photoelectrochemical applications. ACS Applied Materials & Interfaces, 2018,10(49):42301-42309.
URL PMID |
[16] | LIU S, HE M, DI X, et al. CsPbX3 nanocrystals films coated on YAG: Ce3+ pig for warm white lighting source. Chemical Engineering Journal, 2017,330:823-830. |
[17] |
XIN Y, ZHAO H, ZHANG J, et al. Highly stable and luminescent perovskite-polymer composites from a convenient and universal strategy. ACS Applied Materials & Interfaces, 2018,10(5):4971-4980.
URL PMID |
[18] |
ZHOU Q, BAI Z, LU W G, et al. In situ fabrication of halide perovskite nanocrystal-embedded polymer composite films with enhanced photoluminescence for display backlights. Advanced Materials, 2016,28(41):9163-9168.
URL PMID |
[19] | LI Z J, HOFMAN E, LI J, et al. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Advanced Functional Materials, 2018,28(1):1704288. |
[20] |
PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015,15(6):3692-3696.
URL PMID |
[21] |
FANG X X. Construction of highly ordered ZnO-TiO2 nanotube arrays (ZnO/TNTs) heterostructure for photocatalytic application. ACS Applied Materials & Interfaces, 2012,4(12):7055-7063.
DOI URL PMID |
[22] | GUO W, LIN Z, WANG X, et al. Sonochemical synthesis of nanocrystalline TiO2 by hydrolysis of titanium alkoxides. Microelectronic Engineering, 2003,66(1-4):95-101. |
[23] | YANG J, WANG Y, LI W, et al. Amorphous TiO2 shells: a vital elastic buffering layer on silicon nanoparticles for high-performance and safe lithium storage. Advanced Materials, 2017,29(48):1700523. |
[24] |
KIM H G, BORSE P H, CHOI W Y, et al. Photocatalytic nanodiodes for visible light photocatalysis. Angewandte Chemie International Edition, 2005,44(29):4585-4589.
URL PMID |
[25] | ZHOU D, ZHI C, QIAN Y, et al. In-situ construction of all-solid-state Z-scheme g-C3N4/TiO2 nanotube arrays photocatalyst with enhanced visible-light-induced properties. Solar Energy Materials and Solar Cells, 2016,157:399-405. |
[26] |
ZHOU J, CHEN W, SUN C, et al. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Applied Materials & Interfaces, 2017,9(13):11689-11695.
URL PMID |
[27] |
DONG Y, QIAO T, KIM D, et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Letters, 2018,18(6):3716-3722.
DOI URL PMID |
[28] | LEE S, LEE K, KIM W D, et al. Thin amorphous TiO2 shell on CdSe nanocrystal quantum dots enhances photocatalysis of hydrogen evolution from water. The Journal of Physical Chemistry C, 2014,118(41):23627-23634. |
[1] | WU Lin, HU Minglei, WANG Liping, HUANG Shaomeng, ZHOU Xiangyuan. Preparation of TiHAP@g-C3N4 Heterojunction and Photocatalytic Degradation of Methyl Orange [J]. Journal of Inorganic Materials, 2023, 38(5): 503-510. |
[2] | MA Xinquan, LI Xibao, CHEN Zhi, FENG Zhijun, HUANG Juntong. BiOBr/ZnMoO4 Step-scheme Heterojunction: Construction and Photocatalytic Degradation Properties [J]. Journal of Inorganic Materials, 2023, 38(1): 62-70. |
[3] | CHEN Hanxiang, ZHOU Min, MO Zhao, YI Jianjian, LI Huaming, XU Hui. 0D/2D CoN/g-C3N4 Composites: Structure and Photocatalytic Performance for Hydrogen Production [J]. Journal of Inorganic Materials, 2022, 37(9): 1001-1008. |
[4] | XUE Hongyun, WANG Congyu, MAHMOOD Asad, YU Jiajun, WANG Yan, XIE Xiaofeng, SUN Jing. Two-dimensional g-C3N4 Compositing with Ag-TiO2 as Deactivation Resistant Photocatalyst for Degradation of Gaseous Acetaldehyde [J]. Journal of Inorganic Materials, 2022, 37(8): 865-872. |
[5] | CHI Congcong, QU Panpan, REN Chaonan, XU Xin, BAI Feifei, ZHANG Danjie. Preparation of SiO2@Ag@SiO2@TiO2 Core-shell Structure and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(7): 750-756. |
[6] | WANG Xiaojun, XU Wen, LIU Runlu, PAN Hui, ZHU Shenmin. Preparation and Properties of Ag@C3N4 Photocatalyst Supported by Hydrogel [J]. Journal of Inorganic Materials, 2022, 37(7): 731-740. |
[7] | LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts [J]. Journal of Inorganic Materials, 2022, 37(1): 38-44. |
[8] | ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5 [J]. Journal of Inorganic Materials, 2022, 37(1): 58-64. |
[9] | LIU Peng, WU Shimiao, WU Yunfeng, ZHANG Ning. Synthesis of Zn0.4(CuGa)0.3Ga2S4/CdS Photocatalyst for CO2 Reduction [J]. Journal of Inorganic Materials, 2022, 37(1): 15-21. |
[10] | WANG Luping, LU Zhanhui, WEI Xin, FANG Ming, WANG Xiangke. Application of Improved Grey Model in Photocatalytic Data Prediction [J]. Journal of Inorganic Materials, 2021, 36(8): 871-876. |
[11] | AN Weijia, LI Jing, WANG Shuyao, HU Jinshan, LIN Zaiyuan, CUI Wenquan, LIU Li, XIE Jun, LIANG Yinghua. Fe(III)/rGO/Bi2MoO6 Composite Photocatalyst Preparation and Phenol Degradation by Photocatalytic Fenton Synergy [J]. Journal of Inorganic Materials, 2021, 36(6): 615-622. |
[12] | XIONG Jinyan, LUO Qiang, ZHAO Kai, ZHANG Mengmeng, HAN Chao, CHENG Gang. Facilely Anchoring Cu nanoparticles on WO3 Nanocubes for Enhanced Photocatalysis through Efficient Interface Charge Transfer [J]. Journal of Inorganic Materials, 2021, 36(3): 325-331. |
[13] | SHU Mengyang, LU Jialin, ZHANG Zhijie, SHEN Tao, XU Jiayue. CsPbBr3 Perovskite Quantum Dots/Ultrathin C3N4 Nanosheet 0D/2D Composite: Enhanced Stability and Photocatalytic Activity [J]. Journal of Inorganic Materials, 2021, 36(11): 1217-1222. |
[14] | LIU Yaxin, WANG Min, SHEN Meng, WANG Qiang, ZHANG Lingxia. Bi-doped Ceria with Increased Oxygen Vacancy for Enhanced CO2 Photoreduction Performance [J]. Journal of Inorganic Materials, 2021, 36(1): 88-94. |
[15] | ZHANG Dongshuo,CAI Hao,GAO Kaiyin,MA Zichuan. Preparation and Visible-light Photocatalytic Degradation on Metronidazole of Zn2SiO4-ZnO-biochar Composites [J]. Journal of Inorganic Materials, 2020, 35(8): 923-930. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||