Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (6): 561-569.DOI: 10.15541/jim20200347
• REVIEW • Next Articles
SU Li(), YANG Jianping(), LAN Yue, WANG Lianjun, JIANG Wan
Received:
2020-06-24
Revised:
2020-07-24
Published:
2021-06-20
Online:
2020-09-09
Contact:
YANG Jianping, professor. E-mail: jianpingyang@dhu.edu.cn
About author:
SU Li(1988-), female, PhD candidate. E-mail: 1169143@mail.dhu.edu.cn
Supported by:
CLC Number:
SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36(6): 561-569.
[1] |
LOWRY G V, JOHNSON K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004,38(19):5208-5216.
DOI URL |
[2] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997,31(7):2154-2156.
DOI URL |
[3] |
LI X Q, ZHANG W X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 2006,22(10):4638-4642.
DOI URL |
[4] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environmental Science & Technology, 2018,52(1):230-236.
DOI URL |
[5] |
PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 2000,34(12):2564-2569.
DOI URL |
[6] |
FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 2014,267:194-205.
DOI URL |
[7] |
PHENRAT T, SALEH N, LOWRY G V, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007,41(1):284-290.
DOI URL |
[8] |
YANG Z, QIAN J, PAN B C, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences, 2019,116(14):6659-6664.
DOI URL |
[9] |
QIN H, GUAN X, TRATNYEK P G. Effects of sulfidation and nitrate on the reduction of N-Nitrosodimethylamine by zerovalent iron. Environmental Science & Technology, 2019,53(16):9744-9754.
DOI URL |
[10] |
TOSCO T, CRUZ V C, SETHI R, et al. Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 2014,77:10-21.
DOI URL |
[11] |
HUA Y, WANG W, ZHANG W X, et al. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Chemosphere, 2018,201:603-611.
DOI URL |
[12] |
GRIEGER K D, BJERG P L, BAUN A, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contaminant Hydrology, 2010,118(3):165-183.
DOI URL |
[13] |
ZHU F, LI L, LIU T, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ)in the soil leachate by nZVI/Ni bimetal material. Environmental Pollution, 2017,227:444-450.
DOI URL |
[14] |
HUANG W, LI W X. Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 2019,21(2):523-536.
DOI URL |
[15] | CHU K, WANG F, ZHANG H, et al. Interface design of graphene/ copper composites by matrix alloying with titanium. Materials & Design, 2018,144:290-303. |
[16] |
CHEN P C, LIU M, MIRKIN C A, et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 2019,363(6430):959.
DOI URL |
[17] |
YANG Z, LIU J, WANG F, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 2016,132:68-75.
DOI URL |
[18] |
CHANG W S, LIU H J, CHU Y H, et al. Tuning electronic transport in a self-assembled nanocomposite. ACS Nano, 2014,8(6):6242-6249.
DOI URL |
[19] |
ESPINO P E, BRAS J, DOMENEK S, et al. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 2018,183:267-277.
DOI URL |
[20] |
PENG J, CHENG Q. High-performance nanocomposites inspired by nature. Advanced Materials, 2017,29(45):1702959.
DOI URL |
[21] |
HUANG J, TANG Z, GUO B, et al. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal- ligand bonds. Macromolecular Rapid Communications, 2016,37(13):1040-1045.
DOI URL |
[22] |
SANCHEZ C, RIBOT F, LEBEAU B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via Sol-Gel chemistry. Journal of Materials Chemistry, 1999,9(1):35-44.
DOI URL |
[23] |
ZHANG Y, GONG S, CHENG Q, et al. Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 2016,45(9):2378-2395.
DOI URL |
[24] |
NALDONI A, PSARO R, DAL S V, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012,134(18):7600-7603.
DOI URL |
[25] |
TANG J, LIU J, IMURA M, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. Journal of the American Chemical Society, 2015,137(4):1572-1580.
DOI URL |
[26] |
XU Z C, HOU Y L, SUN S H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 2007,129(28):8698-8699.
DOI URL |
[27] |
TSENG H H, SU J G, LIANG C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/ dechlorination of trichloroethylene. Journal of Hazardous Materials, 2011,192(2):500-506.
DOI URL |
[28] |
LI Z, WANG L, MENG J, et al. Zeolite-supported nanoscale zero- valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 2018,344:1-11.
DOI URL |
[29] |
LUO W, WANG Y, YANG J P, et al. Silicon/mesoporous carbon/ crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano, 2016,10(11):10524-10532.
DOI URL |
[30] |
LU W, LI J, CHEN L, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of Colloid and Interface Science, 2017,505:1134-1146.
DOI URL |
[31] |
YANG J P, ZHANG F, ZHAO D Y, et al. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014,50(6):713-715.
DOI URL |
[32] |
YANG J P, DOU S X, ZHAO D Y, et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015,8(8):2503-2514.
DOI URL |
[33] |
YANG J P, ZHANG F, ZHAO D Y, et al. Mesoporous silica- coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Advanced Healthcare Materials, 2014,3(10):1620-1628.
DOI URL |
[34] |
ZHAO D Y, HUO Q, STUCKY G D, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998,120(24):6024-6036.
DOI URL |
[35] |
BECK J S, VARTULI J C, SCHLENKER J L, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992,114(27):10834-10843.
DOI URL |
[36] |
INAGAKI S, GUAN S, TERASAKI O, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999,121(41):9611-9614.
DOI URL |
[37] |
LI W, ZHANG F, ZHAO D Y, et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. Journal of the American Chemical Society, 2012,134(29):11864-11867.
DOI URL |
[38] |
KAMATA K, LU Y, XIA Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society, 2003,125(9):2384-2385.
DOI URL |
[39] |
LI W, DENG Y H, ZHAO D Y, et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Journal of the American Chemical Society, 2011,133(40):15830-15833.
DOI URL |
[40] |
YUE Q, LI J, SU J, et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. Journal of the American Chemical Society, 2017,139(43):15486-15493.
DOI URL |
[41] |
SUN H, SHEN X, CHEN H, et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures. Journal of the American Chemical Society, 2012,134(27):11243-11250.
DOI URL |
[42] |
ANTOLINI E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009,88(1):1-24.
DOI URL |
[43] |
BANG J H, HAN K, SUSLICK K S, et al. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 2007,111(29):10959-10964.
DOI URL |
[44] |
SKRABALAK S E, SUSLICK K S. Porous carbon powders prepared by ultrasonic spray pyrolysis. Journal of the American Chemical Society, 2006,128(39):12642-12643.
DOI URL |
[45] | XU H W, ZHANG W X, YANG J P, et al. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Applied Materials & Interfaces, 2019,11(4):3861-3868. |
[46] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol., 2018,52(1):230-236.
DOI URL |
[47] |
WANG Q Q, ZHANG W Z, YANG J P, et al. Porous-carbon- confined formation of monodisperse iron nanoparticle yolks toward versatile nanoreactors for metal extraction. Chemistry-A European Journal 2018, 24(58):15663-15668.
DOI URL |
[48] |
SU L, JIAN W, YANG J P, et al. Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020,56(18):2795-2798.
DOI URL |
[49] |
SU L, JIAN W, YANG J P, et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Letters, 2019,19(8):5423-5430.
DOI URL |
[50] |
HU Y, PENG X, ZHANG L, et al. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance. Environmental Science & Technology, 2019,53(14):8333-8341.
DOI URL |
[51] |
WANG C, BAER D R, QIANG Y, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 2009,131(25):8824-8832.
DOI URL |
[52] | LING L, ZHANG W X. Reactions of nanoscale zero-valent iron with Ni(II): three-dimensional tomography of the “Hollow out” effect in a single nanoparticle. Environmental Science & Technology Letters, 2014,1(3):209-213. |
[53] | WU D, PENG S, ZHANG Y, et al. Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution. ACS Sustainable Chemistry & Engineering, 2018,6(3):3039-3048. |
[54] |
MEFFRE A, RESPAUD M, CHAUDRET B, et al. Use of long chain amine as a reducing agent for the synthesis of high quality monodisperse iron(0) nanoparticles. Journal of Materials Chemistry, 2011,21(35):13464-13469.
DOI URL |
[55] |
EGEBERG A, BLOCK T, FELDMANN C. Lithiumpyridinyl- driven synthesis of high-purity zero-valent iron nanoparticles and their use in follow-up reactions. Small, 2019,15(37):1902321.
DOI URL |
[56] |
LUO W, LIU H K, YANG J P, et al. Germanium nanograin decoration on carbon shell: boosting lithium-storage properties of silicon nanoparticles. Advanced Functional Materials, 2016,26(43):7800-7806.
DOI URL |
[57] |
SUN Z, YANG J P, ZHAO D Y, et al. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core-shell nanostructures. Journal of Materials Chemistry A, 2014,2(17):6071-6074.
DOI URL |
[58] |
WANG Q Q, JIANG W, YANG J P, et al. Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 2018,54(46):5887-5890.
DOI URL |
[59] |
JIAO J, WANG H, CAO L, et al. In situ confined growth based on a self-templating reduction strategy of highly dispersed Ni nanoparticles in hierarchical yolk-shell Fe@SiO2 structures as efficient catalysts. Chemistry-An Asian Journal, 2016,11(24):3534-3540.
DOI URL |
[60] |
LAN Y, CHEN J L, YANG J P, et al. Fe/Fe3C nanoparticle- decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 2020,8(31):15853-15863.
DOI URL |
[61] |
LIANG H W, WEI W, FENG X, et al. Mesoporous metal-nitrogen- doped carbon electrocatalysts for highly efficient oxygen reduction reaction. Journal of the American Chemical Society, 2013,135(43):16002-16005.
DOI URL |
[62] |
XIAO M, ZHU J, XING W, et al. Meso/macroporous nitrogen- doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Advanced Materials, 2015,27(15):2521-2527.
DOI URL |
[63] |
WU Z Y, XU X X, YU S H, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angewandte Chemie-International Edition, 2015,54(28):8179-8183.
DOI URL |
[64] |
LI Z, LI G, LI F, et al. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angewandte Chemie-International Edition, 2015,54(5):1494-1498.
DOI URL |
[65] |
TENG W, FAN J W, ZHANG W X, et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017,5(9):4478-4485.
DOI URL |
[66] |
LI J, CHEN C, WANG X, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389-394.
DOI URL |
[67] |
WANG C, LUO H, CHEN S, et al. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014,268:124-131.
DOI URL |
[68] |
KANEL S R, MANNING B, CHOI H, et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 2005,39(5):1291-1298.
DOI URL |
[69] |
TANG C, LING L, ZHANG W X. Pb(II) deposition-reduction- growth onto iron nanoparticles induced by graphitic carbon nitride. Chemical Engineering Journal, 2020,387:124088.
DOI URL |
[70] |
CHEN M, WANG H, YANG J P, et al. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen- doped carbon coralline. Nanoscale, 2018,10(40):19023-19030.
DOI URL |
[71] |
DUAN W, LI G, FENG C, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research, 2019,161:126-135.
DOI URL |
[72] |
WANG J, LING L, ZHANG W X, et al. Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Science Bulletin, 2020,65(11):926-933.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[7] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[8] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[9] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[10] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[11] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[12] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[13] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[14] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
[15] | FENG Jingjing, ZHANG Youran, MA Mingsheng, LU Yiqing, LIU Zhifu. Current Status and Development Trend of Cold Sintering Process [J]. Journal of Inorganic Materials, 2023, 38(2): 125-136. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||