Journal of Inorganic Materials ›› 2021, Vol. 36 ›› Issue (3): 269-276.DOI: 10.15541/jim20200070
Special Issue: 能源材料论文精选(2021); 【虚拟专辑】计算材料
• RESEARCH PAPER • Previous Articles Next Articles
YAN Yuxing1(), WANG Fan1, ZHANG Juexuan2, LI Fushao1
Received:
2020-02-15
Revised:
2020-03-29
Published:
2021-03-20
Online:
2020-08-28
About author:
YAN Yuxing(1980-), male, PhD, lecturer. E-mail: 58536437@qq.com
Supported by:
CLC Number:
YAN Yuxing, WANG Fan, ZHANG Juexuan, LI Fushao. First Principles Study of Electronic Structure and Optical Properties of ZnNb2O6 with Vacancy Defects[J]. Journal of Inorganic Materials, 2021, 36(3): 269-276.
Position | Eperfect/eV | Edefect /eV | EM,f /eV |
---|---|---|---|
-127970.114 | - | - | |
Zn | - | -125926.649 | 7.74 |
Nb | - | -126299.525 | 24.23 |
O1 | - | -127526.322 | 11.17 |
O2 | - | -127527.205 | 10.29 |
O3 | - | -127524.412 | 13.08 |
O4 | - | -127525.333 | 12.16 |
Table 1 Total energies and formation energies of ZnNb2O6 with different element vacancies
Position | Eperfect/eV | Edefect /eV | EM,f /eV |
---|---|---|---|
-127970.114 | - | - | |
Zn | - | -125926.649 | 7.74 |
Nb | - | -126299.525 | 24.23 |
O1 | - | -127526.322 | 11.17 |
O2 | - | -127527.205 | 10.29 |
O3 | - | -127524.412 | 13.08 |
O4 | - | -127525.333 | 12.16 |
Model | a/nm | b/nm | c/nm | α | β | γ | V/nm3 | (ΔV/V)/% | Eg/eV |
---|---|---|---|---|---|---|---|---|---|
ZnNb2O6 (Theoretical)[ | 1.421 | 0.573 | 0.504 | 90 | 90 | 90 | 0.410 | - | 3.53[ 3.68[ |
ZnNb2O6 (This work) | 1.433 | 0.583 | 0.506 | 90.000 | 90.000 | 90.000 | 0.423 | 3.18% | 3.51 |
VZn | 1.436 | 0.584 | 0.506 | 90.000 | 89.916 | 90.000 | 0.424 | 0.287% | 3.50 |
VNb | 1.441 | 0.584 | 0.508 | 90.383 | 89.985 | 90.082 | 0.427 | 0.990% | 2.98 |
VO | 1.434 | 0.583 | 0.507 | 90.091 | 89.912 | 89.988 | 0.424 | 0.139% | 1.35 |
Table 2 Lattice parameter of niobate materials system
Model | a/nm | b/nm | c/nm | α | β | γ | V/nm3 | (ΔV/V)/% | Eg/eV |
---|---|---|---|---|---|---|---|---|---|
ZnNb2O6 (Theoretical)[ | 1.421 | 0.573 | 0.504 | 90 | 90 | 90 | 0.410 | - | 3.53[ 3.68[ |
ZnNb2O6 (This work) | 1.433 | 0.583 | 0.506 | 90.000 | 90.000 | 90.000 | 0.423 | 3.18% | 3.51 |
VZn | 1.436 | 0.584 | 0.506 | 90.000 | 89.916 | 90.000 | 0.424 | 0.287% | 3.50 |
VNb | 1.441 | 0.584 | 0.508 | 90.383 | 89.985 | 90.082 | 0.427 | 0.990% | 2.98 |
VO | 1.434 | 0.583 | 0.507 | 90.091 | 89.912 | 89.988 | 0.424 | 0.139% | 1.35 |
Model | Bond | Population min(max)/nm | Length min(max)/ nm |
---|---|---|---|
ZnNb2O6 | O-Zn | 0.15(0.29) | 0.207(0.222) |
O-Nb | 0.21(0.79) | 0.182(0.234) | |
O-O | -0.05(0.00) | 0.263(0.293) | |
VZn | O-Zn | 0.14(0.35) | 0.199(0.225) |
O-Nb | 0.15(0.87) | 0.176(0.239) | |
O-O | -0.06(0.00) | 0.256(0.298) | |
VNb | O-Zn | -0.05(0.45) | 0.193(0.277) |
O-Nb | 0.03(0.81) | 0.179(0.247) | |
O-O | -0.06(0.31) | 0.136(0.300) | |
VO | O-Zn | 0.05(0.33) | 0.204(0.245) |
O-Nb | 0.15(0.88) | 0.177(0.240) | |
O-O | -0.07(0.00) | 0.261(0.300) |
Table 3 Bond population calculation value of niobate materials system
Model | Bond | Population min(max)/nm | Length min(max)/ nm |
---|---|---|---|
ZnNb2O6 | O-Zn | 0.15(0.29) | 0.207(0.222) |
O-Nb | 0.21(0.79) | 0.182(0.234) | |
O-O | -0.05(0.00) | 0.263(0.293) | |
VZn | O-Zn | 0.14(0.35) | 0.199(0.225) |
O-Nb | 0.15(0.87) | 0.176(0.239) | |
O-O | -0.06(0.00) | 0.256(0.298) | |
VNb | O-Zn | -0.05(0.45) | 0.193(0.277) |
O-Nb | 0.03(0.81) | 0.179(0.247) | |
O-O | -0.06(0.31) | 0.136(0.300) | |
VO | O-Zn | 0.05(0.33) | 0.204(0.245) |
O-Nb | 0.15(0.88) | 0.177(0.240) | |
O-O | -0.07(0.00) | 0.261(0.300) |
Fig. 2 Electron density difference interface of (a) ZnNb2O6, (b) VZn, (c) VNb and (d) VO Red and blue arias indicate acquiring electron and losing electron, respectively
Model | Species | s | p | d | Total | Charge/eV |
---|---|---|---|---|---|---|
ZnNb2O6 | Zn | 0.11 | 0.62 | 9.98 | 10.72 | 1.28 |
Nb | 2.35 | 6.31 | 2.92 | 11.58 | 1.42 | |
O | 1.84-1.86 | 4.80-4.86 | - | 6.67-6.70 | -0.70 - -0.67 | |
VZn | Zn | 0.08-0.15 | 0.62-0.64 | 9.95-9.98 | 10.68-10.74 | 1.26-1.32 |
Nb | 2.32-2.35 | 6.30-6.31 | 2.91-2.94 | 11.55-11.57 | 1.43-1.45 | |
O | 1.84-1.87 | 4.71-4.86 | - | 6.58-6.71 | -0.71 - -0.58 | |
VNb | Zn | 0.10-0.25 | 0.59-0.63 | 9.97-9.98 | 10.70-10.83 | 1.17-1.30 |
Nb | 2.27-2.35 | 6.29-6.35 | 2.91-2.95 | 11.50-11.61 | 1.39-1.50 | |
O | 1.84-1.89 | 4.40-4.88 | - | 6.41-6.73 | -0.73 - -0.41 | |
VO | Zn | 0.07-0.55 | 0.61-0.69 | 9.98 | 10.71-11.15 | 0.85-1.33 |
Nb | 2.34-2.48 | 6.28-6.49 | 2.91-3.02 | 11.54-11.99 | 1.01-1.46 | |
O | 1.84-1.87 | 4.73-4.87 | - | 6.66-6.71 | -0.71 - -0.64 |
Table 4 Atomic population of niobate materials system
Model | Species | s | p | d | Total | Charge/eV |
---|---|---|---|---|---|---|
ZnNb2O6 | Zn | 0.11 | 0.62 | 9.98 | 10.72 | 1.28 |
Nb | 2.35 | 6.31 | 2.92 | 11.58 | 1.42 | |
O | 1.84-1.86 | 4.80-4.86 | - | 6.67-6.70 | -0.70 - -0.67 | |
VZn | Zn | 0.08-0.15 | 0.62-0.64 | 9.95-9.98 | 10.68-10.74 | 1.26-1.32 |
Nb | 2.32-2.35 | 6.30-6.31 | 2.91-2.94 | 11.55-11.57 | 1.43-1.45 | |
O | 1.84-1.87 | 4.71-4.86 | - | 6.58-6.71 | -0.71 - -0.58 | |
VNb | Zn | 0.10-0.25 | 0.59-0.63 | 9.97-9.98 | 10.70-10.83 | 1.17-1.30 |
Nb | 2.27-2.35 | 6.29-6.35 | 2.91-2.95 | 11.50-11.61 | 1.39-1.50 | |
O | 1.84-1.89 | 4.40-4.88 | - | 6.41-6.73 | -0.73 - -0.41 | |
VO | Zn | 0.07-0.55 | 0.61-0.69 | 9.98 | 10.71-11.15 | 0.85-1.33 |
Nb | 2.34-2.48 | 6.28-6.49 | 2.91-3.02 | 11.54-11.99 | 1.01-1.46 | |
O | 1.84-1.87 | 4.73-4.87 | - | 6.66-6.71 | -0.71 - -0.64 |
Fig. 6 Photoelectric characteristic functions of the system (a) Reflectivity; (b) Absorption; (c) Refractive index, n; (d) Extinction coefficient, k; (e) Conductivity; (f) Loss function
[1] |
HRENIAK D, SPEGHINI A, BETTINELLI M, et al. Spectroscopic investigations of nanostructured LiNbO3 doped with Eu3+. Journal of Luminescence, 2006,119/120(7-10):219-223.
DOI URL |
[2] | FANG T H, HSIAO Y J, CHANG Y S, et al. Photoluminescent characterization of KNbO3:Eu3+. Materials Chemistry and Physics, 2006,100(2/3):418-422. |
[3] |
XIAO X Z, YAN B. Hybrid precursors synthesis and optical properties of LnNbO4:Bi3+ blue phosphors and Bi3+ sensitizing of on Dy3+'s luminescence in YNbO4 matrix . Journal of Alloys and Compounds, 2006,421(1/2):252-257.
DOI URL |
[4] |
ZHANG Y C, YUE Z X, GUI Z L, et al. Effects of CaF2 addition on the microstructure and microwave dielectric properties of ZnNb2O6 ceramics. Ceramics International, 2003,29(5):555-559.
DOI URL |
[5] | NGAMJARUROJANA A, KHAMMAN O, YIMNIRUN R, et al. Effect of calcination conditions on phase formation and paricle size of zinc niobate powers systhesized by solid-state reaction. Materials Letters, 2006,60(23):2867-2872. |
[6] | XU D P, LIU Y, ZHOU Q, et al. Optical phonon behaviors of columbite ZnNb2O6 single crystal. Journal of Alloys and Compounds, 2015,61(8):694-699. |
[7] | NEURGAONKAR R R, CORY W K, OLIVER J R. Growth and ferrolectric properties of tungsten bronze Sr2-xCaxNaNb5O15 single crystals. Materials Research Bulletin, 1988,223(10):1459-1461. |
[8] |
NEURGAONKAR R R, NELSON J G, OLIVER J R. Ferroelectric properitie of tungsten bronze M62+M24-Nb8O30 solid solutions system. Materials Research Bulletin, 1992,27(6):677-684.
DOI URL |
[9] |
WU W M, LIANG S J, DING Z X, et al. A new approach to the preparation of microcrystalline ZnNb2O6 photocatalysts via a water- soluble niobium-citrate-peroxo compound. Solid State Sciences, 2011,13(11):2019-2023.
DOI URL |
[10] | ZHENG J, CHEN G H, CHEN X, et al. Dielectric properties and energy storage behaviors in ZnNb2O6-doped Sr0.97Nd0.02TiO3 ceramics. Journal of Matrials Science: Materials in Electronics, 2016,27(4):3759-3764. |
[11] |
WANG T, WEI X Y, HU Q Y, et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Materials Science and Engineering B, 2013,178(16):1081-1086.
DOI URL |
[12] |
ZHANG Y C, LI L T, YUE Z X, et al. Effects of additives on microstructures and microwave dielectric properties of ZnNb2O6 ceramics. Materials Science and Engineering B, 2003,99(1/2/3):282-285.
DOI URL |
[13] | YAN Y X, WANG F, LI F S, et al. First principle calculation of electronic structure and optical properties of ZnNb2-xTaxO6(x=0-2.0). Chinese Journal of Luminescence, 2020,41(1):38-47. |
[14] |
KORMANYOS A, THOMAS A, HUDA M N, et al. Solution combustion synthesis, characterization, and photoelectrochemistry of CuNb2O6 and ZnNb2O6 nanoparticles. The Journal of Physical Chemistry C, 2016,120(29):16024-16034.
DOI URL |
[15] |
LIN, Q L, LI G P, XU N N, et al. A first-principles study on magnetic properties of the intrinsic. Acta Physica Sinica, 2017,66(3):037101.
DOI URL |
[16] | SHI L B, WANG Y P. A study on native defects and magnetic properties in undoped rutile TiO2 using LDA and LDA+UOp+UTid methods. Journal of Magnetism and Magnetic Materials, 2016,405(1):1-8. |
[17] | KIN D Y, HONG J, PARK Y R, et al. The origin of oxygen vacancy induced ferromagnetism in undoped TiO2. Journal of Physics: Condensed Matter, 2009,21(19):1954051. |
[18] |
WARBURG M, BUSCHBAUM H M. ZnTa2O6, ein neuer vertreter des tri-α-PbO2 typs (mit ergӓ enzenden daten über ZnNb2O6). Zeitschrift für Anorganische und Allgemeine Chemie, 1984,508(1):55-60.
DOI URL |
[19] |
ZHOU S W, PENG P, CHEN W Q, et al. Electronic structures and optical properties of Ce-doped anatase TiO2 with oxygen vacancy. Acta Physica Sinica, 2019,68(3):037101.
DOI URL |
[20] | SEGALL M D, LINDAN P J D, PROBER M J, et al. First- principles simulation: ideas, illustrations and the CASTEP code. Journal of Physics: Condensed Matter, 2002,14(11):2717-2744. |
[21] | HSIAO Y J, FANG H T, JI L W. Synthesis and luminescent properties of ZnNb2O6 nanocrystals for solar cell. Materials Letters, 2010,64(23):2563-2565. |
[22] | MAEDA M, YAMAMURA T, IKEDA T. Dielectric characteristics of several complex oxide ceramics at microwave frequencies. Japanese Journal of Applied Physics, 1987,26(2):76-79. |
[23] | GAO X Q, GUO ZH Y, ZHANG Y F, et al. The electronic structure and optical properties of Al-N codoped ZnO. Chinese Journal of Luminescence, 2010,31(4):509-514. |
[24] | ZHANG L L, XIA T, LIU G A, et al. Electronic and optical properties of N-Pr co-doped anatase ZnO from first-principles. Acta Physica Sinica, 2019,68(1):017401. |
[25] | MA W K, WU J J, ZHANG G F, et al. First-principle study of electronic structure and optical property of Cu/Co doped FeS2. Acta Optica Sinica, 2016,36(10):1016001. |
[26] | LI J, LIU T Y, YAO H A, et al. First principles study on the property of O vacancy in LuPO4 crystal. Journal of Inorganic Materials, 2019,34(8):878-884. |
[27] | WANG Z, ZHA X H, WU Z, et al. First-principles study on electronic and magnetic properties of Mn-doped strontium ferrite SrFe12O19. Journal of Inorganic Materials, 2019,34(10):1047-1054. |
[28] | YU Z Q, WANG X, TIAN A, et al. Study on Ni-doped anatase by first principle method. Chinese Journal of Inorganic Chemistry, 2017,33(1):41-48. |
[29] | FAN T J, YUAN J H, YANG Y Y, et al. First-principles calculations of the electronic structure and optical properties of Co-Y Co-doped ZnO. Chinese Journal of Inorganic Chemistry, 2016,32(7):1183-1189. |
[30] | 沈学础 . 半导体光谱和光学性质. 北京: 科学出版社, 2002: 1-32. |
[31] | 楼立人, 尹民, 李清庭 . 发光物理基础: 固体光跃迁过程. 合肥: 中国科技大学出版社, 2014: 35-78. |
[1] | WEN Zhiqin, HUANG Binrong, LU Taoyi, ZOU Zhengguang. Pressure on the Structure and Thermal Properties of PbTiO3: First-principle Study [J]. Journal of Inorganic Materials, 2022, 37(7): 787-794. |
[2] | XIAO Meixia, LI Miaomiao, SONG Erhong, SONG Haiyang, LI Zhao, BI Jiaying. Halogenated Ti3C2 MXene as High Capacity Electrode Material for Li-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(6): 660-668. |
[3] | YUAN Gang, MA Xinguo, HE Hua, DENG Shuiquan, DUAN Wangyang, CHENG Zhengwang, ZOU Wei. Plane Strain on Band Structures and Photoelectric Properties of 2D Monolayer MoSi2N4 [J]. Journal of Inorganic Materials, 2022, 37(5): 527-533. |
[4] | PENG Junhui, TIKHONOV Evgenii. Vacancy on Structures, Mechanical and Electronic Properties of Ternary Hf-Ta-C System: a First-principles Study [J]. Journal of Inorganic Materials, 2022, 37(1): 51-57. |
[5] | ZHAO Linyan, LIU Yangsi, XI Xiaoli, MA Liwen, NIE Zuoren. First-principles Study on Nanoscale Tungsten Oxide: a Review [J]. Journal of Inorganic Materials, 2021, 36(11): 1125-1136. |
[6] | LIN Qimin, CUI Jiangong, YAN Xin, YUAN Xueguang, CHEN Xiaoyu, LU Qichao, LUO Yanbin, HUANG Xue, ZHANG Xia, REN Xiaomin. First-principles Study on Electronic Structure and Optical Properties of Single Point Defect Graphene Oxide [J]. Journal of Inorganic Materials, 2020, 35(10): 1117-1122. |
[7] | WANG Chang-Ying, LU Yu-Chang, REN Cui-Lan, WANG Gang, HUAI Ping. Theoretical Studies on the Modulation of the Electronic Property of Ti2CO2 by Electric Field, Strain and Charge States [J]. Journal of Inorganic Materials, 2020, 35(1): 73-78. |
[8] | LIU Guo-Quan, JIANG Xiao-Juan, ZHOU Jie, LI You-Bing, BAI Xiao-Jing, CHEN Ke, HUANG Qing, DU Shi-Yu. Synthesis and Theoretical Study of Conductive Mo1.33CT2 MXene [J]. Journal of Inorganic Materials, 2019, 34(7): 775-780. |
[9] | GU Feng, WANG You-Wei, ZHENG Zhi-Hui, LIU Jian-Jun, LU Wen-Cong. Catalytic Mechanism of Palladium Catalyst for the Oxidation Reduction and Evolution Reaction of Lithium-air Battery [J]. Journal of Inorganic Materials, 2018, 33(10): 1131-1135. |
[10] | ZHANG Jian-Feng, CAO Hui-Yang, WANG Hong-Bing. Research Progress of Novel Two-dimensional Material MXene [J]. Journal of Inorganic Materials, 2017, 32(6): 561-570. |
[11] | SHAO Dong-Yuan, CHENG Nan-Pu, CHEN Jing-Jing, LI Xiao, CHEN Zhi-Qian, LI Chun-Mei, HUI Qun. Electronic Structure, Plane Acoustic Velocity and Refractive Property of LiNbO3 and LiTaO3 [J]. Journal of Inorganic Materials, 2016, 31(2): 171-179. |
[12] |
YU Zhi-Qiang, ZHANG Chang-Hua, LI Shi-Dong, LIAO Hong-Hua.
Electronic Structures and Optoelectronic Properties of C/Ge-doped Silicon Nanotubes [J]. Journal of Inorganic Materials, 2015, 30(3): 233-239. |
[13] | WANG Xiao-Yuan, SHIMADA Takahiro, KITAMURA Takayuki. First-principles Calculation on Ferroelectricity and Its Coupling Behavior with Mechanical Deformation of Ultrathin PbTiO3 Nanotube [J]. Journal of Inorganic Materials, 2014, 29(3): 309-314. |
[14] | LIU Feng, LU Yi-Qing, LI Yong-Xiang. First-principles Study of Intergrowth Bismuth Layer-structured Ferroelectric Bi7Ti4NbO21 [J]. Journal of Inorganic Materials, 2014, 29(1): 38-42. |
[15] | REN Yu-Mei, CHEN Ning, ZHAO Hai-Lei, WANG Li-Jun, LI Fu-Sen. Theoretical Research on Optimization Dopant Regulation of La2BO4(B: B-site Element) Series Mixed Conductor Materials [J]. Journal of Inorganic Materials, 2013, 28(8): 841-846. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||