[1] |
BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 2012,489(7416):414-418.
DOI
URL
PMID
|
[2] |
DISALVO F J. Thermoelectric cooling and power generation. Science, 1999,285(5428):703-706.
DOI
URL
PMID
|
[3] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008,7(2):105-114.
DOI
URL
PMID
|
[4] |
TRIPATHI M N, BHANDARI C M. High-temperature thermoelectric performance of Si-Ge alloys. Journal of Physics- Condensed Matter, 2003,15(31):5359.
DOI
URL
|
[5] |
ZHAO L D, LO S H, ZHANG Y, et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014,508(7496):373-377.
DOI
URL
|
[6] |
ZHAO L D, TAN G, HAO S, et al. Ultrahigh power factor and thermoelectric performance in hole-doped single-crystal SnSe. Science, 2015,351(6269):141.
DOI
URL
PMID
|
[7] |
PENG K L, HUI S, ZHOU X Y, et al. Broad temperature plateau for high ZTs in heavily doped p-type SnSe single crystals. Energy & Environmental Science, 2016,9(2):454-460.
|
[8] |
CHANG C, WU M, HE D, et al. 3D charge and 2D phonon transports leading to high out-of-plane ZT in n-type SnSe crystals. Science, 2018,360:778-783.
DOI
URL
PMID
|
[9] |
DUONG A T, NGUYEN V Q, DUVJIR G, et al. Achieving ZT=2.2 with Bi-doped n-type SnSe single crystals. Nature Communications, 2016,7:13713.
DOI
URL
PMID
|
[10] |
LI G D, AYDEMIR U, WOOD M, et al. Ideal strength and deformation mechanism in high-efficiency thermoelectric SnSe. Chemistry of Materials, 2017,29:2382-2389.
DOI
URL
|
[11] |
FU J, SU X, XIE H, et al. Understanding the combustion process for the synthesis of mechanically robust SnSe thermoelectrics. Nano Energy, 2018,44:53-62.
|
[12] |
CHEN Z G, SHI X L, ZHAO L D, et al. High-performance SnSe thermoelectric materials: progress and future challenge. Progress in Materials Science, 2018,97:283-346.
|
[13] |
WU D, WU L J, ZHAO L D, et al. Direct observation of vast off-stoichiometric defects in single crystalline SnSe. Nano Energy, 2017,35:321-330.
|
[14] |
JIN M, XU J Y, LI X H, et al. Microhardness and fracture toughness of <111> oriented PZNT single crystal. Materials Science and Engineering A, 2008,472(1):353-357.
DOI
URL
|
[15] |
CHU F, ZHANG Q, ZHOU Z, et al. Enhanced thermoelectric and mechanical properties of Na-doped polycrystalline SnSe thermoelectric materials via CNTs dispersion. J. Alloys Compd., 2018,741:756-764.
DOI
URL
|
[16] |
XU Z J, HU L P, YING P J, et al. Enhanced thermoelectric and mechanical properties of zone melted p-type (Bi, Sb)2Te3 thermoelectric materials by hot deformation. Acta Materialia, 2015,84:385-392.
|
[17] |
REN F, HALL B D, NI J E, et al. Mechanical Characterization of PbTe-based Thermoelectric Materials. Materials Research Society Symposium Proceedings, 2008,1044:121.
|
[18] |
LIU Z, GAO W, MENG X, et al. Mechanical properties of nanostructured thermoelectric materials α-MgAgSb. Scripta Materialia, 2017,127:72-75.
DOI
URL
|
[19] |
JIN M, XU J Y, SHI M L, et al. Mechanical properties anisotropy of PZNT93/7 single crystal. Journal of Physics D: Applied Physics, 2007,40(5):1473-1476.
DOI
URL
|
[20] |
JIN M, FANG Y Z, SHEN H, et al. Mechanical property evaluation of GaAs crystal for solar cells. Chinese Physics Letters, 2011,28(8):086101.
DOI
URL
|
[21] |
GUPTA V, BAMZAI K K, KOTRU P N, et al. Mechanical characteristics of flux-grown calcium titanate and nickel titanate crystals. Materials Chemistry & Physics, 2005,89:64-71.
|