Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (12): 1357-1364.DOI: 10.15541/jim20200152
Special Issue: 能源材料论文精选(一):锂离子电池(2020); 【虚拟专辑】锂离子电池(2020~2021)
Previous Articles Next Articles
YAN Yiyuan1(),JU Jiangwei2,YU Meiyan1,CHEN Shougang1(),CUI Guanglei2()
Received:
2020-03-23
Revised:
2020-05-11
Published:
2020-12-20
Online:
2020-06-09
About author:
YAN Yiyuan(1994–), male, Master candidate. E-mail: yanyiyuan94@163.com
Supported by:
CLC Number:
YAN Yiyuan, JU Jiangwei, YU Meiyan, CHEN Shougang, CUI Guanglei. In-situ Polymerization Integrating 3D Ceramic Framework in All Solid-state Lithium Battery[J]. Journal of Inorganic Materials, 2020, 35(12): 1357-1364.
Fig. 2 (a) XRD patterns of standard LLZO, the as-prepared LLZTO powders and p-LLZTO; (b) Cross sectional SEM image of p-LLZTO; (c) Pore size distribution of p-LLZTO; (d) EIS plots of dense LLZTO and p-LLZTO at room temperature with inset showing the partial magnified spectrum of the dense LLZTO
Fig. 3 (a) FT-IR spectra of PEGMEA, P(PEGMEA), and P(PEGMEA) from the 3D composite; (b) 1H NMR spectra of PEGMEA and P(PEGMEA) from the 3D composite(the solvents are deuterated N,N-dimethylformamide) with insets showing the corresponding structural formula of PEGMEA and P(PEGMEA); (c) Thermal evolution of ohmic resistance at 60 ℃ for steel|3D composite|steel symmetrical cell with inset showing the digital image of PEGMEA with/without p-LLZTO after heat-treatment at 60 ℃ for 24 h; (d) Relation between ionic conductivity of electrolyte and temperature for P(PEGMEA) and 3D composite; (e) Cross sectional SEM image and element mapping analysis of the 3D composite
Electrolyte | Lithium salt | EOa : Li+ | Conductivity of polymer/(S·cm-1) | Conductivity of composite/(S·cm-1) | Promotion factor | Ref. |
---|---|---|---|---|---|---|
PEO/LATP particles | LiClO4 | 15 : 1 | 1.3×10-6 | 9.5×10-6 | 7.5 | [ |
PEO/LLZO fibers | LiTFSIb | - | 2.5×10-6 | 2.7×10-5 | 11 | [ |
PEO/LATPc fibers | LiTFSI | 8 : 1 | 3.2×10-6 | 4.9×10-5 | 15 | [ |
PEO/3D LLZO | LiTFSI | 10 : 1 | 1.8×10-6 | 8.5×10-5 | 47 | [ |
PEO/3D LLTOd | LiTFSI | 10 : 1 | 2.2×10-6 | 8.8×10-5 | 40 | [ |
Table 1 Conductivities $(\sigma_{Li^+})$ of different solid electrolytes at room temperature
Electrolyte | Lithium salt | EOa : Li+ | Conductivity of polymer/(S·cm-1) | Conductivity of composite/(S·cm-1) | Promotion factor | Ref. |
---|---|---|---|---|---|---|
PEO/LATP particles | LiClO4 | 15 : 1 | 1.3×10-6 | 9.5×10-6 | 7.5 | [ |
PEO/LLZO fibers | LiTFSIb | - | 2.5×10-6 | 2.7×10-5 | 11 | [ |
PEO/LATPc fibers | LiTFSI | 8 : 1 | 3.2×10-6 | 4.9×10-5 | 15 | [ |
PEO/3D LLZO | LiTFSI | 10 : 1 | 1.8×10-6 | 8.5×10-5 | 47 | [ |
PEO/3D LLTOd | LiTFSI | 10 : 1 | 2.2×10-6 | 8.8×10-5 | 40 | [ |
Fig. 4 EIS plots of (a-c) pre- and (d-f) post-treated Li-Li symmetrical batteries based on (a, d) PEGMEA, (b, e) LLZTO, (c, f) 3D composites; (g) Ohmic and (h) interfacial resistance comparison of pre- and post-treated Li-Li symmetrical cells; (i) DC galvanostatic cycle of Li-Li symmetrical batteries based on P(PEGMEA) and the 3D composite under room temperature at 0.1 mA·cm-2 with insets showing D.C. galvanostatic cycle of Li-Li symmetrical battery based on LLZTO(up) and the magnified profile of Li|3D composite|Li(down)
Fig. 5 (a) Cycle performances of in-situ LiCoO2|3D composite|Li, in-situ LiCoO2|P(PEGMEA)|Li, ex-situ LiCoO2|3D composite|Li ASLBs; (b) Charge-discharge curves of in-situ LiCoO2|3D composite|Li, in-situ LiCoO2|P(PEGMEA)|Li, ex-situ LiCoO2|3D composite|Li ASLBs; Cross-sectional SEM images of the LiCoO2/3D composite interface from the disassembled (c) in-situ and (d) ex-situ LiCoO2|3D composite|Li ASLBs
[1] |
GAO Z, SUN H, FU L, et al. Promises, challenges, and recent progress of inorganic solid-state electrolytes for all-solid-state lithium batteries. Advanced Materials, 2018,30(17):e1705702.
DOI URL PMID |
[2] |
BACHMAN J C, MUY S, GRIMAUD A, et al. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical Reviews, 2016,116(1):140-162.
DOI URL PMID |
[3] | ZHENG F, KOTOBUKI M, SONG S, et al. Review on solid electrolytes for all-solid-state lithium-ion batteries. Journal of Power Sources, 2018,389:198-213. |
[4] | ZHANG B, TAN R, YANG L, et al. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Materials, 2018,10:139-159. |
[5] | CHEN R, QU W, GUO X, et al. The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons, 2016,3(6):487-516. |
[6] | FAN L, WEI S, LI S, et al. Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Advanced Energy Materials, 2018,8(11):1702657. |
[7] | YUE L, MA J, ZHANG J, et al. All solid-state polymer electrolytes for high-performance lithium ion batteries. Energy Storage Materials, 2016,5:139-164. |
[8] | MANTHIRAM A, YU X, WANG S. Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials, 2017,2(4):16103 |
[9] | GAO Y, WANG D, LI Y C, et al. Salt-based organic-inorganic nanocomposites: towards a stable lithium metal/Li10GeP2S12 solid electrolyte interface. Angew. Chem. Int. Ed., 2018,57(41):13608-13612. |
[10] | BUANNIC L, ORAYECH B. Dual substitution strategy to enhance Li+ ionic conductivity in Li7La3Zr2O12 solid electrolyte. Chemistry of Materials, 2017,29(4):1769-1778. |
[11] | ZHANG Z, SHAO Y, LOTSCH B, et al. New horizons for inorganic solid state ion conductors. Energy & Environmental Science, 2018,11(8):1945-1976. |
[12] | CHENG X B, ZHAO C Z, YAO Y X, et al. Recent advances in energy chemistry between solid-state electrolyte and safe lithium- metal anodes. Chem, 2019,5(1):74-96. |
[13] |
ZHA W, CHEN F, YANG D, et al. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. Journal of Power Sources, 2018,397:87-94.
DOI URL |
[14] |
ZHU P, YAN C, DIRICAN M, et al. Li0.33La0.557TiO3 ceramic nanofiber- enhanced polyethylene oxide-based composite polymer electrolytes for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2018,6(10):4279-4285.
DOI URL |
[15] | WAN Z, LEI D, YANG W, et al. Low resistance-integrated all-solid-state battery achieved by Li7La3Zr2O12 nanowire upgrading polyethylene oxide (PEO) composite electrolyte and PEO cathode binder. Advanced Functional Materials, 2019,29(1):1805301. |
[16] | CHEN L, LI Y, LI S P, et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer- in-ceramic”. Nano Energy, 2018,46:176-184. |
[17] | XIE H, YANG C, FU K K, et al. Flexible, scalable, and highly conductive garnet-polymer solid electrolyte templated by bacterial cellulose. Advanced Energy Materials, 2018,8(18):1703474. |
[18] | BAE J, LI Y, ZHANG J, et al. A 3D nanostructured hydrogel- framework-derived high-performance composite polymer lithium-ion electrolyte. Angew. Chem. Int. Ed., 2018,57(8):2096-2100. |
[19] | BAE J, LI Y, ZHAO F, et al. Designing 3D nanostructured garnet frameworks for enhancing ionic conductivity and flexibility in composite polymer electrolytes for lithium batteries. Energy Storage Materials, 2018,15:46-52. |
[20] |
LIU Y, SUN Q, ZHAO Y, et al. Stabilizing the interface of NASICON solid electrolyte against Li metal with atomic layer deposition. ACS Applied Materials & Interfaces, 2018,10(37):31240-31248.
DOI URL PMID |
[21] |
JU J, WANG Y, CHEN B, et al. Integrated interface strategy toward room temperature solid-state lithium batteries. ACS Applied Materials & Interfaces, 2018,10(16):13588-13597.
DOI URL PMID |
[22] | ZHAO Q, LIU X, STALIN S, et al. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nature Energy, 2019,4(5):365-373. |
[23] |
DUAN H, YIN Y X, SHI Y, et al. Dendrite-free Li-metal battery enabled by a thin asymmetric solid electrolyte with engineered layers. Journal of the American Chemical Society, 2018,140(1):82-85.
DOI URL PMID |
[24] | PARANJAPE N, MANDADAPU P C, WU G, et al. Highly- branched cross-linked poly(ethylene oxide) with enhanced ionic conductivity. Polymer, 2017,111:1-8. |
[25] | BAN X, ZHANG W, CHEN N, et al. A high-performance and durable poly(ethylene oxide)-based composite solid electrolyte for all solid-state lithium battery. The Journal of Physical Chemistry C, 2018,122(18):9852-9858. |
[26] | GONG Y, FU K, XU S, et al. Lithium-ion conductive ceramic textile: a new architecture for flexible solid-state lithium metal batteries. Materials Today, 2018,21(6):594-601. |
[27] |
LI D, CHEN L, WANG T, et al. 3D fiber-network-reinforced bicontinuous composite solid electrolyte for dendrite-free lithium metal batteries. ACS Applied Materials & Interfaces, 2018,10(8):7069-7078.
DOI URL PMID |
[28] |
LI Z, HUANG H M, ZHU J K, et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Applied Materials & Interfaces, 2019,11(1):784-791.
DOI URL PMID |
[29] | WANG Q, WEN Z, JIN J, et al. A gel-ceramic multi-layer electrolyte for long-life lithium sulfur batteries. Chem. Commun. (Camb), 2016,52(8):1637-1640. |
[30] |
HAN X, GONG Y, FU K K, et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nature Materials, 2017,16(5):572-579.
DOI URL PMID |
[31] | JU J, CHEN F, XIA C. Ionic conductivity of impregnated samaria doped ceria for solid oxide fuel cells. Electrochimica Acta, 2014,136:422-429. |
[32] | WU B, WANG S, LOCHALA J, et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy & Environmental Science, 2018,11(7):1803-1810. |
[33] |
HU J L, TIAN J, Li C L. Nanostructured carbon nitride polymer- reinforced electrolyte to enable dendrite-suppressed lithium metal batteries. ACS Applied Materials & Interfaces, 2017,9:11615-11625.
DOI URL PMID |
[34] | HU J L, YAO Z G, CHEN K Y, et al. High-conductivity open framework fluorinated electrolyte bonded by solidified ionic liquid wires for solid-state Li metal batteries. Energy Storage Materials, 2020,28:37-46. |
[1] | GU Xuesu, YIN Jie, WANG Kanglong, CUI Chong, MEI Hui, CHEN Zhongming, LIU Xuejian, HUANG Zhengren. Effect of Particle Grading on Properties of Silicon Carbide Ceramics by Binder Jetting [J]. Journal of Inorganic Materials, 0, (): 216-. |
[2] | CHEN Yu, LIN Pu'an, CAI Bing, ZHANG Wenhua. Research Progress of Inorganic Hole Transport Materials in Perovskite Solar Cells [J]. Journal of Inorganic Materials, 0, (): 105-. |
[3] | TIAN Yubin, TIAN Chaofan, LI Sen, ZHAO Yongxin, XING Tao, LI Zhi, CHEN Xiaoru, XIANG Shuairong, DAI Pengcheng. Biomass-derived High-conductive Carbon Cloth: Preparation and Its Application as Gas Diffusion Layers in Fuel Cells [J]. Journal of Inorganic Materials, 0, (): 127-. |
[4] | JIANG Runlu, WU Xin, GUO Haocheng, ZHENG Qi, WANG Lianjun, JIANG Wan. UiO-67 Based Conductive Composites: Preparation and its Thermoelectric Performance [J]. Journal of Inorganic Materials, 0, (): 197-. |
[5] | LI Haiyan, KUANG Fenghua, WU Haolong, LIU Xiaogen, BAO Yiwang, WAN Detian. Temperature Dependence of Residual Tensile Stresses and its Influences on Crack Propagation Behaviour [J]. Journal of Inorganic Materials, 0, (): 214-. |
[6] | FANG Wanli, SHEN Lili, LI Haiyan, CHEN Xinyu, CHEN Zongqi, SHOU Chunhui, ZHAO Bin, YANG Songwang. Effect of Film Formation Processes of NiOx Mesoporous Layer on Performance of Perovskite Solar Cells with Carbon Electrodes [J]. Journal of Inorganic Materials, 0, (): 2-. |
[7] | DING Tongshun, FENG Ping, SUN Xuewen, SHAN Husheng, LI Qi, SONG Jian. Perovskite Film Passivated by Fmoc-FF-OH and Its Photovoltaic Performance [J]. Journal of Inorganic Materials, 0, (): 50-. |
[8] | XU Hao, QIAN Wei, HUA Yinqun, YE Yunxia, DAI Fengze, CAI Jie. Effects of Micro Texture Processed by Picosecond Laser on Hydrophobicity of Silicon Carbide [J]. Journal of Inorganic Materials, 0, (): 73-. |
[9] | QIU Haiyang, MIAO Guangtan, LI Hui, LUAN Qi, LIU Guoxia, SHAN Fukai. Effect of Plasma Treatment on the Long-term Plasticity of Synaptic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 406-412. |
[10] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[11] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[12] | WU Junlin, DING Jiyang, HUANG Xinyou, ZHU Danyang, HUANG Dong, DAI Zhengfa, YANG Wenqin, JIANG Xingfen, ZHOU Jianrong, SUN Zhijia, LI Jiang. Fabrication and Microstructure of Gd2O2S:Tb Scintillation Ceramics from Water-bath Synthesized Nano-powders: Influence of H2SO4/Gd2O3 Molar Ratio [J]. Journal of Inorganic Materials, 2023, 38(4): 452-460. |
[13] | CHEN Xinli, LI Yan, WANG Weisheng, SHI Zhiwen, ZHU Liqiang. Gelatin/Carboxylated Chitosan Gated Oxide Neuromorphic Transistor [J]. Journal of Inorganic Materials, 2023, 38(4): 421-428. |
[14] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[15] | FANG Renrui, REN Kuan, GUO Zeyu, XU Han, ZHANG Woyu, WANG Fei, ZHANG Peiwen, LI Yue, SHANG Dashan. Associative Learning with Oxide-based Electrolyte-gated Transistor Synapses [J]. Journal of Inorganic Materials, 2023, 38(4): 399-405. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||