Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (12): 1373-1379.DOI: 10.15541/jim20200135
Special Issue: 能源材料论文精选(三):热电与燃料电池(2020)
Previous Articles Next Articles
ZHOU Xingyuan(),LIU Wei(),ZHANG Cheng,HUA Fuqiang,ZHANG Min,SU Xianli,TANG Xinfeng()
Received:
2020-03-16
Revised:
2020-04-03
Published:
2020-12-20
Online:
2020-04-05
About author:
ZHOU Xingyuan(1995–), male, Master candidate. E-mail: zhouxingyuan@whut.edu.cn
Supported by:
CLC Number:
ZHOU Xingyuan, LIU Wei, ZHANG Cheng, HUA Fuqiang, ZHANG Min, SU Xianli, TANG Xinfeng. Optimization of Thermoelectric Transport Properties of Nb-doped Mo1-xWxSeTe Solid Solutions[J]. Journal of Inorganic Materials, 2020, 35(12): 1373-1379.
Fig. S2 SEM fractured surface morphologies of Mo1-xWxSeTe (a) x = 0, ⊥P; (b) x = 0, //P; (c) x = 0.25, ⊥P; (d) x = 0.25, //P; (e) x = 0.5, ⊥P; (f) x = 0.5, //P
Fig. S3 Temperature dependence of (a, d) electrical conductivity σ, (b, e) Seebeck coefficient S, and (c, f) thermal conductivity κ of Mo1-xWxSeTe solid solutions (0≤x≤0.5) measured along the ⊥P and //P directions
Sample | Actual composition | Lattice parameters/nm | Eg/eV |
---|---|---|---|
x=0 | MoSe1.02Te1.04 | a=0.35, c=1.367 | 1.030 |
x=0.25 | Mo0.74W0.25Se0.9Te0.96 | a=0.3512, c=1.375 | 1.005 |
x=0.5 | Mo0.54W0.46Se0.93Te0.94 | a=0.3.5, c=1.371 | 0.998 |
Table S1 1 Compositions, cell parameters and optical band gaps of Mo1-xWxSeTe (0≤x≤0.5) solid solutions
Sample | Actual composition | Lattice parameters/nm | Eg/eV |
---|---|---|---|
x=0 | MoSe1.02Te1.04 | a=0.35, c=1.367 | 1.030 |
x=0.25 | Mo0.74W0.25Se0.9Te0.96 | a=0.3512, c=1.375 | 1.005 |
x=0.5 | Mo0.54W0.46Se0.93Te0.94 | a=0.3.5, c=1.371 | 0.998 |
Sample | P0 | P⊥ | LF |
---|---|---|---|
x=0 | 0.31 | 0.71 | 0.58 |
x=0.25 | 0.30 | 0.54 | 0.34 |
x=0.5 | 0.29 | 0.45 | 0.23 |
Table S2 2 LF factors of Mo1-xWxSeTe (0≤x≤0.5) solid solutions
Sample | P0 | P⊥ | LF |
---|---|---|---|
x=0 | 0.31 | 0.71 | 0.58 |
x=0.25 | 0.30 | 0.54 | 0.34 |
x=0.5 | 0.29 | 0.45 | 0.23 |
Sample | Actual composition | Lattice parameters/nm |
---|---|---|
Mo0.5W0.5SeTe | Mo0.54W0.46Se0.93Te0.94 | a=0.350, c=1.371 |
Nb0.01Mo0.495W0.495SeTe | Mo0.53W0.47Se0.99Te1.09 | a=0.351, c=1.371 |
Nb0.03Mo0.485W0.485SeTe | Nb0.03Mo0.51W0.46Se0.93Te0.96 | a=0.351, c=1.370 |
Nb0.05Mo0.475W0.475SeTe | Nb0.04Mo0.44W0.52Se0.97Te0.95 | a=0.352, c=1.371 |
Nb0.07Mo0.465W0.465SeTe | Nb0.05Mo0.51W0.43Se0.90Te0.86 | a=0.352, c=1.371 |
Table S3 3 Compositions and cell parameters of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions
Sample | Actual composition | Lattice parameters/nm |
---|---|---|
Mo0.5W0.5SeTe | Mo0.54W0.46Se0.93Te0.94 | a=0.350, c=1.371 |
Nb0.01Mo0.495W0.495SeTe | Mo0.53W0.47Se0.99Te1.09 | a=0.351, c=1.371 |
Nb0.03Mo0.485W0.485SeTe | Nb0.03Mo0.51W0.46Se0.93Te0.96 | a=0.351, c=1.370 |
Nb0.05Mo0.475W0.475SeTe | Nb0.04Mo0.44W0.52Se0.97Te0.95 | a=0.352, c=1.371 |
Nb0.07Mo0.465W0.465SeTe | Nb0.05Mo0.51W0.43Se0.90Te0.86 | a=0.352, c=1.371 |
Fig. S4 Temperature dependence of (a) electrical conductivity σ, (b) Seebeck coefficient S, (c) power factor PF, (d) thermal conductivity κ, (e) lattice thermal conductivity κL and (f) the ZT values of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions measured along the //P direction
Sample | Actual composition | p/(×1020, cm-3) | μ/(cm2·V-1·s-1) | σ/(×104, S·m-1) | S/(μV·K-1) | |||
---|---|---|---|---|---|---|---|---|
⊥P | //P | ⊥P | //P | ⊥P | //P | |||
y=0 | Mo0.54W0.46Se0.93Te0.94 | 0.16 | 0.79 | 0.26 | 0.02 | 0.01 | 22.4 | 42.0 |
y=0.005 | Mo0.53W0.47Se0.99Te1.09 | 1.53 | 1.37 | 1.32 | 0.33 | 0.32 | 17.2 | 15.1 |
y=0.015 | Nb0.03Mo0.51W0.46Se0.93Te0.96 | 5.96 | 2.95 | 2.52 | 2.82 | 2.40 | 102 | 93.1 |
y=0.025 | Nb0.04Mo0.44W0.52Se0.97Te0.95 | 6.61 | 5.45 | 4.80 | 5.76 | 5.07 | 65.9 | 70.9 |
y=0.035 | Nb0.05Mo0.51W0.43Se0.90Te0.86 | 7.63 | 5.72 | 4.29 | 6.98 | 5.24 | 53.2 | 52.0 |
Table 1 Compositions and transport parameters of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions at room temperature
Sample | Actual composition | p/(×1020, cm-3) | μ/(cm2·V-1·s-1) | σ/(×104, S·m-1) | S/(μV·K-1) | |||
---|---|---|---|---|---|---|---|---|
⊥P | //P | ⊥P | //P | ⊥P | //P | |||
y=0 | Mo0.54W0.46Se0.93Te0.94 | 0.16 | 0.79 | 0.26 | 0.02 | 0.01 | 22.4 | 42.0 |
y=0.005 | Mo0.53W0.47Se0.99Te1.09 | 1.53 | 1.37 | 1.32 | 0.33 | 0.32 | 17.2 | 15.1 |
y=0.015 | Nb0.03Mo0.51W0.46Se0.93Te0.96 | 5.96 | 2.95 | 2.52 | 2.82 | 2.40 | 102 | 93.1 |
y=0.025 | Nb0.04Mo0.44W0.52Se0.97Te0.95 | 6.61 | 5.45 | 4.80 | 5.76 | 5.07 | 65.9 | 70.9 |
y=0.035 | Nb0.05Mo0.51W0.43Se0.90Te0.86 | 7.63 | 5.72 | 4.29 | 6.98 | 5.24 | 53.2 | 52.0 |
Fig. 4 Temperature dependence of (a) electrical conductivity s, (b) Seebeck coefficient S and (c) power factor PF of Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions with inset in (a) showing the impurity states introduced by the Nb doping.
Fig. 6 Temperature dependent (a) thermal conductivity κ, (b) lattice thermal conductivity κL and (c) figure of merit ZT for Nb2yMo0.5-yW0.5-ySeTe (0≤y≤0.035) solid solutions
Fig. S5 Comparison of thermoelectric properties along ⊥p and //P directions among Nb2yMo0.5-yW0.5-ySeTe solid solutions with y=0.015 and 0.025 as well as Nb0.05Mo0.95SeTe and Ta0.05Mo0.95Se2 in the previous reports (a) Electrical conductivity s; (b) Seebeck coefficient S; (c) Power factor PF; (d) Thermal conductivity κ; (e) Lattice thermal conductivity κL; (f) ZT
[1] | ROWE D M. CRC Handbook of Thermoelectrics. Boca Raton: CRC Press, 1995. |
[2] |
BELL L E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,321(5895):1457-1461.
DOI URL PMID |
[3] |
ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279-293.
DOI URL |
[4] | CHEN L D, XIONG Z, BAI S Q. Recent progress of thermoelectric nano-composites. Journal of Inorganic Materials, 2010,25(6):3-10. |
[5] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials, 2008,7(2):105-114.
DOI URL PMID |
[6] |
BISWAS K, HE J Q, BLUM I D, et al. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature, 489(7416):414-418.
DOI URL PMID |
[7] |
TAN G J, ZHAO L D, KANATZIDIS M G. Rationally designing high-performance bulk thermoelectric materials. Chemical Reviews, 2016,116(19):12123-12149.
URL PMID |
[8] |
SU X, WEI P, LI H, et al. Multi-scale microstructural thermoelectric materials: transport behavior, non-equilibrium preparation, and applications. Advanced Materials, 2017,29(20):1602013.
DOI URL |
[9] |
POUDEL B, HAO Q, MA Y, et al. High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008,320(5876):634-638.
DOI URL PMID |
[10] |
PEI Y Z, SHI X, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011,473(7345):66-69.
DOI URL PMID |
[11] |
LI H, SU X L, TANG X F, et al. Grain boundary engineering with nano-scale InSb producing high performance InxCeyCo4Sb12+z skutterudite thermoelectrics. Journal of Materiomics, 2017,3(4):273-279.
DOI URL |
[12] |
LIU W, TAN X J, YIN K, et al. Convergence of conduction bands as a means of enhancing thermoelectric performance of n-type Mg2Si1-xSnx solid solutions. Physical Review Letters, 2012,108(16):166601.
DOI URL PMID |
[13] |
HE W K, WANG D Y, WU H J, et al. High thermoelectric performance in low-cost SnS0.91Se0.09 crystals. Science, 2019,365(6460):1418-1424.
DOI URL PMID |
[14] | FU C G, BAI S Q, LIU Y T, et al. Realizing high figure of merit in heavy-band p-type half-Heusler thermoelectric materials. Nature Communications, 2015,6(1):1-7. |
[15] |
SHI X, SUN C, BU Z, et al. Revelation of inherently high mobility enables Mg3Sb2 as a sustainable alternative to n-Bi2Te3 thermoelectrics. Advanced Science, 2019,6(16):1802286.
DOI URL PMID |
[16] |
WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012,7(11):699.
DOI URL |
[17] |
WICKRAMARATNE D, ZAHID F, LAKE R K. Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. The Journal of Chemical Physics, 2014,140(12):124710.
DOI URL PMID |
[18] |
HUANG Z, WU T, KONG S, et al. Enhancement of anisotropic thermoelectric performance of tungsten disulfide by titanium doping. Journal of Materials Chemistry A, 2016,4(26):10159-10165.
DOI URL |
[19] |
KONG S, WU T, YUAN M, et al. Dramatically enhanced thermoelectric performance of MoS2 by introducing MoO2 nanoinclusions. Journal of Materials Chemistry A, 2017,5(5):2004-2011.
DOI URL |
[20] |
KONG S, WU T, ZHUANG W, et al. Realizing p-type MoS2 with enhanced thermoelectric performance by embedding VMo2S4 nanoinclusions. The Journal of Physical Chemistry B, 2018,122(2):713-720.
DOI URL PMID |
[21] |
RUAN L, ZHAO H, LI D, et al. Enhancement of thermoelectric properties of molybdenum diselenide through combined Mg intercalation and Nb doping. Journal of Electronic Materials, 2016,45(6):2926-2934.
DOI URL |
[22] |
ZHANG C, LI Z, ZHANG M, et al. Synergistically improved electronic and thermal transport properties in Nb-doped NbyMo1-ySe2-2xTe2x solid solutions due to alloy phonon scattering and increased valley degeneracy. ACS Applied Materials & Interfaces, 2019,11(29):26069-26081.
DOI URL PMID |
[23] |
ZHANG C, LI Z, ZHANG M, et al. Impurity states in Mo1-xMxSe2 compounds doped with group VB elements and their electronic and thermal transport properties. Journal of Materials Chemistry C, 2020,8(2):619-629.
DOI URL |
[24] | MOTT N F, DAVIS E A, WEISER K. Electronic processes in non- crystalline materials. Physics Today, 1972,25:55. |
[1] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[2] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[3] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. |
[4] | TAN Xiao-Fang, DUAN Si-Chen, WANG Hong-Xiang, WU Qing-Song, LI Miao-Miao, LIU Guo-Qiang, XU Jing-Tao, TAN Xiao-Jian, SHAO He-Zhu, JIANG Jun. Multi-doping in SnTe: Improvement of Thermoelectric Performance due to Lower Thermal Conductivity and Enhanced Power Factor [J]. Journal of Inorganic Materials, 2019, 34(3): 335-340. |
[5] | QIN Yu-Ting, QIU Peng-Fei, SHI Xun, CHEN Li-Dong. ThermoelectricProperties for CuInTe2-xSx (x = 0, 0.05, 0.1, 0.15) Solid Solution [J]. Journal of Inorganic Materials, 2017, 32(11): 1171-1176. |
[6] | SHEN Jun-Jie, ZHU Tie-Jun, YU Cui, YANG Sheng-Hui, ZHAO Xin-Bing. Influence of Ag2Te Doping on the Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys [J]. Journal of Inorganic Materials, 2010, 25(6): 583-587. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||