Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 916-922.DOI: 10.15541/jim20190641
Special Issue: 能源材料论文精选(三):热电与燃料电池(2020); 【虚拟专辑】热电材料(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
QIU Xiaoxiao1(),ZHOU Xiying1(),FU Yuntian2,SUN Xiaomeng2,WANG Lianjun3(),JIANG Wan2
Received:
2019-12-18
Revised:
2020-01-10
Published:
2020-08-20
Online:
2020-03-06
Supported by:
CLC Number:
QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties[J]. Journal of Inorganic Materials, 2020, 35(8): 916-922.
x | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
0 | 0.4165 | 0.4165 | 1.0667 | 0.160284 |
0.01 | 0.4167 | 0.4167 | 1.0656 | 0.160234 |
0.02 | 0.4170 | 0.4170 | 1.0639 | 0.160204 |
0.03 | 0.4173 | 0.4173 | 1.0627 | 0.160278 |
0.05 | 0.4175 | 0.4175 | 1.0604 | 0.160037 |
0.10 | 0.4192 | 0.4192 | 1.0449 | 0.159058 |
Table 1 Lattice parameters and volume of Ge1-xInxTe
x | a/nm | b/nm | c/nm | V/nm3 |
---|---|---|---|---|
0 | 0.4165 | 0.4165 | 1.0667 | 0.160284 |
0.01 | 0.4167 | 0.4167 | 1.0656 | 0.160234 |
0.02 | 0.4170 | 0.4170 | 1.0639 | 0.160204 |
0.03 | 0.4173 | 0.4173 | 1.0627 | 0.160278 |
0.05 | 0.4175 | 0.4175 | 1.0604 | 0.160037 |
0.10 | 0.4192 | 0.4192 | 1.0449 | 0.159058 |
Element | Atomic number | Mass/ % | Normalized quality/% | Atom/ % | Abs. error/ % |
---|---|---|---|---|---|
Te | 52 | 64.25 | 64.28 | 50.38 | 1.89 |
Ge | 32 | 34.24 | 34.26 | 47.18 | 1.91 |
In | 49 | 1.43 | 1.46 | 1.27 | 0.07 |
Table 2 Information of different elements of Ge0.97In0.03Te
Element | Atomic number | Mass/ % | Normalized quality/% | Atom/ % | Abs. error/ % |
---|---|---|---|---|---|
Te | 52 | 64.25 | 64.28 | 50.38 | 1.89 |
Ge | 32 | 34.24 | 34.26 | 47.18 | 1.91 |
In | 49 | 1.43 | 1.46 | 1.27 | 0.07 |
Sample | ρ/(g·cm-3) | d/% | σ/(×104, S·m-1) | S/(μV·K-1) | nH/(×1020, cm-3) | mH/(cm2·V-1·s-1) | L0/(×10-8, V2·K-2) |
---|---|---|---|---|---|---|---|
x=0 | 6.176 | 99.27 | 74.92 | 38.4 | 16.32 | 35.31 | 2.22 |
x =0.005 | 6.168 | 99.00 | 54.75 | 49.7 | — | — | 2.15 |
x =0.010 | 6.184 | 99.16 | 49.75 | 54.5 | — | — | 2.13 |
x =0.015 | 6.193 | 99.20 | 37.72 | 64.3 | 13.05 | 25.44 | 2.07 |
x =0.020 | 6.185 | 98.95 | 30.61 | 66.8 | — | — | 2.05 |
x =0.025 | 6.170 | 98.59 | 26.80 | 77.9 | — | — | 2.01 |
x =0.030 | 6.183 | 98.75 | 22.49 | 86.0 | 10.55 | 22.54 | 1.98 |
x =0.050 | 6.162 | 97.86 | 11.47 | 125 | 9.818 | 12.40 | 1.84 |
x =0.100 | 6.240 | 97.48 | 1.02 | 267 | 4.083 | 5.521 | 1.60 |
Table 3 Electrical transport properties of Ge1-xInxTe at room temperature
Sample | ρ/(g·cm-3) | d/% | σ/(×104, S·m-1) | S/(μV·K-1) | nH/(×1020, cm-3) | mH/(cm2·V-1·s-1) | L0/(×10-8, V2·K-2) |
---|---|---|---|---|---|---|---|
x=0 | 6.176 | 99.27 | 74.92 | 38.4 | 16.32 | 35.31 | 2.22 |
x =0.005 | 6.168 | 99.00 | 54.75 | 49.7 | — | — | 2.15 |
x =0.010 | 6.184 | 99.16 | 49.75 | 54.5 | — | — | 2.13 |
x =0.015 | 6.193 | 99.20 | 37.72 | 64.3 | 13.05 | 25.44 | 2.07 |
x =0.020 | 6.185 | 98.95 | 30.61 | 66.8 | — | — | 2.05 |
x =0.025 | 6.170 | 98.59 | 26.80 | 77.9 | — | — | 2.01 |
x =0.030 | 6.183 | 98.75 | 22.49 | 86.0 | 10.55 | 22.54 | 1.98 |
x =0.050 | 6.162 | 97.86 | 11.47 | 125 | 9.818 | 12.40 | 1.84 |
x =0.100 | 6.240 | 97.48 | 1.02 | 267 | 4.083 | 5.521 | 1.60 |
Fig. 5 Thermoelectric properties of Ge1-xInxTe (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor; (d) Total thermal conductivity; (e) Lattice thermal conductivity; (f) Figure of merit
[1] | MAO J, LIU Z, ZHOU J, et al. Advances in thermoelectrics. Advances in Physics, 2018,67(2):69-147. |
[2] |
ZHANG X, ZHAO L. Thermoelectric materials: energy conversion between heat and electricity. Journal of Materiomics, 2015,1(2):92-105.
DOI URL |
[3] |
LU X, ZHENG Q, GU S, et al. Enhanced Te properties of Cu@Ag/Bi2Te3 nanocomposites by decoupling electrical and thermal properties. Chinese Chemical Letters, 2019. in press, doi: 10.1016/j.cclet.2019.07.034.
URL PMID |
[4] |
ZHANG Q H, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279-293.
DOI URL |
[5] |
ZHOU Z X, LI J L, FAN Y C, et al. Uniform dispersion of SiC in Yb-filled skutterudite nanocomposites with high thermoelectric and mechanical performance. Scripta Materialia, 2019,162:166-171.
DOI URL |
[6] |
SAJID M, HASSAN I, RAHMAN A. An overview of cooling of thermoelectric devices. Renewable and Sustainable Energy Reviews, 2017,78:15-22.
DOI URL |
[7] |
LI W, PENG J, XIAO W, et al. The temperature distribution and electrical performance of fluid heat exchanger-based thermoelectric generator. Applied Thermal Engineering, 2017,118:742-747.
DOI URL |
[8] |
ZHU T J. Recent advances in thermoelectric materials and devices. Journal of Inorganic Materials, 2019,34(3):233-235.
DOI URL |
[9] |
HONG M, ZOU J, CHEN Z G. Thermoelectric GeTe with diverse degrees of freedom having secured superhigh performance. Advanced Materials, 2019,31(14):e1807071.
DOI URL PMID |
[10] |
TANG C M, LIANG D D, LI H Z, et al. Preparation and thermoelectric properties of Cu1.8S/CuSbS2 composites. Journal of Advanced Ceramics, 2019,8(2):209-217.
DOI URL |
[11] |
ZHANG X, LI J, WANG X, et al. Vacancy manipulation for thermoelectric enhancements in GeTe alloys. Journal of the American Chemical Society, 2018,140(46):15883-15888.
DOI URL PMID |
[12] |
OKAMOTO H. Ge-Te (germanium-tellurium). Journal of Phase Equilibria, 2000,21(5):496-496.
DOI URL |
[13] | DONG J F, SUN F H, TANG H C, et al. Medium-temperature thermoelectric GeTe: vacancy suppression and band structure engineering leading to high performance. Energy & Environmental Science, 2019,12(4):1396-1403. |
[14] |
PERUMAL S, ROYCHOWDHURY S, NEGI D S, et al. High thermoelectric performance and enhanced mechanical stability of p-type Ge1-xSbxTe. Chemistry of Materials, 2015,27(20):7171-7178.
DOI URL |
[15] |
GELBSTEIN Y, DAVIDOW J, LESHEM E, et al. Significant lattice thermal conductivity reduction following phase separation of the highly efficient GexPb1-xTe thermoelectric alloys. Physica Status Solidi (b), 2014,251(7):1431-1437.
DOI URL |
[16] |
CHEN Z, ZHANG X, PEI Y. Manipulation of phonon transport in thermoelectrics. Advanced Materials, 2018,30(17):e1705617.
DOI URL PMID |
[17] |
HEREMANS J P, JOVOVIC V, TOBERER E S, et al. Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states. Science, 2008,321(5888):554-557.
DOI URL PMID |
[18] |
WU L H, LI X, WANG S Y, et al. Resonant level-induced high thermoelectric response in indium-doped GeTe. NPG Asia Materials, 2017,9(1):e343.
DOI URL |
[19] |
SRINIVASAN B, GELLE A, HALET J F, et al. Detrimental effects of doping Al and Ba on the thermoelectric performance of GeTe. Materials (Basel), 2018,11(11):2237.
DOI URL |
[20] |
LEE H S, KIM B S, CHO C W, et al. Herringbone structure in GeTe-based thermoelectric materials. Acta Materialia, 2015,91:83-90.
DOI URL |
[21] |
ZHENG Z, SU X, DENG R, et al. Rhombohedral to cubic conversion of GeTe via MnTe alloying leads to ultralow thermal conductivity, electronic band convergence, and high thermoelectric performance. Journal of the American Chemical Society, 2018,140(7):2673-2686.
DOI URL PMID |
[22] |
ZHOU Y M, ZHOU Y L, PANG Q T, et al. Different doping sites of Ag on Cu2SnSe3 and their thermoelectric property. Journal of Inorganic Materials, 2019,34(3):301-309.
DOI URL |
[23] |
KIM S, LEE H S. Effects of addition of Si and Sb on the microstructure and thermoelectric properties of GeTe. Metals and Materials International, 2018,25(2):528-538.
DOI URL |
[24] |
HONG M, WANG Y, LIU W, et al. Arrays of planar vacancies in superior thermoelectric Ge1-x-yCdxBiyTe with band convergence. Advanced Energy Materials, 2018,8(30):1801837.
DOI URL |
[25] |
DESOUZA L, ZAMIAN J, DAROCHAFILHO G, et al. Blue pigments based on CoxZn1-xAl2O4 spinels synthesized by the polymeric precursor method. Dyes and Pigments, 2009,81(3):187-192.
DOI URL |
[26] |
ALLRED A L. Electronegativity values from thermochemical data. Journal of Inorganic and Nuclear Chemistry, 1961,17(3):215-221.
DOI URL |
[27] |
SRINIVASAN B, GELLÉ A, GUCCI F, et al. Realizing a stable high thermoelectric ZT~2 over a broad temperature range in Ge1-x-yGaxSbyTe via band engineering and hybrid flash-SPS processing. Inorganic Chemistry Frontiers, 2019,6(1):63-73.
DOI URL |
[28] |
SRINIVASAN B, GAUTIER R, GUCCI F, et al. Impact of coinage metal insertion on the thermoelectric properties of GeTe solid- state solutions. The Journal of Physical Chemistry C, 2017,122(1):227-235.
DOI URL |
[29] |
YUE L, FANG T, ZHENG S, et al. Cu/Sb codoping for tuning carrier concentration and thermoelectric performance of GeTe-based alloys with ultralow lattice thermal conductivity. ACS Applied Energy Materials, 2019,2(4):2596-2603.
DOI URL |
[30] |
LI J, ZHANG X, CHEN Z, et al. Low-symmetry rhombohedral gete thermoelectrics. Joule, 2018,2(5):976-987.
DOI URL |
[31] |
ROYCHOWDHURY S, BISWAS K. Slight symmetry reduction in thermoelectrics. Chem., 2018,4(5):939-942.
DOI URL |
[32] |
WANG S, YANG J, TOLL T, et al. Conductivity-limiting bipolar thermal conductivity in semiconductors. Scientific Reports, 2015,5:10136.
DOI URL PMID |
[1] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[2] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[3] | ZHANG Shuo, FU Qiangang, ZHANG Pei, FEI Jie, LI Wei. Influence of High Temperature Treatment of C/C Porous Preform on Friction and Wear Behavior of C/C-SiC Composites [J]. Journal of Inorganic Materials, 2023, 38(5): 561-568. |
[4] | FU Shi, YANG Zengchao, LI Honghua, WANG Liang, LI Jiangtao. Mechanical Properties and Thermal Conductivity of Si3N4 Ceramics with Composite Sintering Additives [J]. Journal of Inorganic Materials, 2022, 37(9): 947-953. |
[5] | HU Jiajun, WANG Kai, HOU Xinguang, YANG Ting, XIA Hongyan. Boron Phosphide with High Thermal Conductivity: Synthesis by Molten Salt Method and Thermal Management Performance [J]. Journal of Inorganic Materials, 2022, 37(9): 933-940. |
[6] | WANG Pengjiang, KANG Huijun, YANG Xiong, LIU Ying, CHENG Cheng, WANG Tongmin. Inhibition of Lattice Thermal Conductivity of ZrNiSn-based Half-Heusler Thermoelectric Materials by Entropy Adjustment [J]. Journal of Inorganic Materials, 2022, 37(7): 717-723. |
[7] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[8] | RUAN Jing, YANG Jinshan, YAN Jingyi, YOU Xiao, WANG Mengmeng, HU Jianbao, ZHANG Xiangyu, DING Yusheng, DONG Shaoming. Porous SiC Ceramic Matrix Composite Reinforced by SiC Nanowires with High Strength and Low Thermal Conductivity [J]. Journal of Inorganic Materials, 2022, 37(4): 459-466. |
[9] | LOU Xunuo, DENG Houquan, LI Shuang, ZHANG Qingtang, XIONG Wenjie, TANG Guodong. Thermal and Electrcial Transport Properities of Ge Doped MnTe Thermoelectrics [J]. Journal of Inorganic Materials, 2022, 37(2): 209-214. |
[10] | REN PeiAn, WANG Cong, ZI Peng, TAO Qirui, SU Xianli, TANG Xinfeng. Effect of Te and In Co-doping on Thermoelectric Properties of Cu2SnSe3 Compounds [J]. Journal of Inorganic Materials, 2022, 37(10): 1079-1086. |
[11] | WANG Weide, CHEN Huanbei, LI Shishuai, YAO Dongxu, ZUO Kaihui, ZENG Yuping. Preparation of Silicon Nitride with High Thermal Conductivity and High Flexural Strength Using YbH2-MgO as Sintering Additive [J]. Journal of Inorganic Materials, 2021, 36(9): 959-966. |
[12] | WANG Haoxuan, LIU Qiaomu, WANG Yiguang. Research Progress of High Entropy Transition Metal Carbide Ceramics [J]. Journal of Inorganic Materials, 2021, 36(4): 355-364. |
[13] | SANG Weiwei, ZHANG Hongsong, CHEN Huahui, WEN Bin, LI Xinchun. Preparation and Thermophysical Properties of (Sm0.2Gd0.2Dy0.2Y0.2Yb0.2)3TaO7 High-entropy Ceramic [J]. Journal of Inorganic Materials, 2021, 36(4): 405-410. |
[14] | MU Tinghai, XU Wentao, LING Junrong, DONG Tianwen, QIN Zixuan, ZHOU Youfu. Microstructure and Properties of ZrO2-AlN Composite Ceramics by Microwave Sintering [J]. Journal of Inorganic Materials, 2021, 36(11): 1231-1236. |
[15] | YANG Xiao, SU Xianli, YAN Yonggao, TANG Xinfeng. Structures and Thermoelectric Properties of (GeTe)nBi2Te3 [J]. Journal of Inorganic Materials, 2021, 36(1): 75-80. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||