Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 834-838.DOI: 10.15541/jim20190598
Special Issue: 结构陶瓷论文精选(2020)
• RESEARCH LETTERS • Previous Articles Next Articles
LI Shufang,ZHAO Shuang,LI Manrong()
Received:
2019-11-25
Revised:
2020-01-16
Published:
2020-07-20
Online:
2020-03-06
Supported by:
CLC Number:
LI Shufang, ZHAO Shuang, LI Manrong. Flux Growth of Tungsten Oxychloride Li23CuW10O40Cl5[J]. Journal of Inorganic Materials, 2020, 35(7): 834-838.
Chemical formula | Li23CuW10O40Cl5 | Chemical formula | Li23CuW10O40Cl5 |
---|---|---|---|
Formula weight | 2878.91 | μ/mm-1 | 32.505 |
Crystal size/mm3 | 0.162×0.115×0.090 | θrange/(°) | 3.07-25.49 |
Crystal system | Hexagonal | GOF on F2 | 1.171 |
Space group | P63/mcm | R1a [I >2s (I)] | 0.0229 |
a/nm | 1.02846(3) | wR2b [I >2s (I)] | 0.0637 |
c/nm | 1.98768(9) | R1a (all data) | 0.0232 |
V/nm3 | 1.82076(11) | wR2b(all data) | 0.0640 |
Z | 2 | Extinction coefficient | 0.00171(14) |
Dcalcd/(g·cm-3) | 5.251 |
Chemical formula | Li23CuW10O40Cl5 | Chemical formula | Li23CuW10O40Cl5 |
---|---|---|---|
Formula weight | 2878.91 | μ/mm-1 | 32.505 |
Crystal size/mm3 | 0.162×0.115×0.090 | θrange/(°) | 3.07-25.49 |
Crystal system | Hexagonal | GOF on F2 | 1.171 |
Space group | P63/mcm | R1a [I >2s (I)] | 0.0229 |
a/nm | 1.02846(3) | wR2b [I >2s (I)] | 0.0637 |
c/nm | 1.98768(9) | R1a (all data) | 0.0232 |
V/nm3 | 1.82076(11) | wR2b(all data) | 0.0640 |
Z | 2 | Extinction coefficient | 0.00171(14) |
Dcalcd/(g·cm-3) | 5.251 |
Atom | Site | x | y | z | Ueq./nm2 |
---|---|---|---|---|---|
W(1) | 12k | 0.1904(1) | 0 | 0.6257(1) | 0.6(1) |
W(2) | 8h | 2/3 | 1/3 | 0.5947(1) | 0.6(1) |
Cu(1) | 2b | 0 | 0 | 1/2 | 2.0(1) |
Cl(1) | 6g | 0.4831(4) | 0.4831(4) | 3/4 | 1.6(1) |
Cl(2) | 4e | 0 | 0 | 0.6693(6) | 7.9(3) |
O(1) | 12k | 0 | 0.8520(8) | 0.5647(4) | 1.3(2) |
O(2) | 12k | 0.3077(8) | 0 | 0.5594(4) | 1.1(2) |
O(3) | 24l | 0.3150(6) | 0.1562(6) | 0.6766(3) | 1.1(1) |
O(4) | 24l | 0.5092(7) | 0.3447(6) | 0.5644(3) | 1.2(1) |
O(5) | 8h | 2/3 | 1/3 | 0.6842(5) | 1.2(2) |
Li(1) | 12j | 0.2060(40) | 0.2060(40) | 3/4 | 1.4(2) |
Li(2) | 12k | 1/2 | 1/2 | 1/2 | 2.2(6) |
Li(3) | 12i | 0.3510(20) | z0.1755(12) | 1/2 | 2.3(5) |
Li(4) | 6f | 0.3520(30) | 0.3520(30) | 0.6319(1) | 4.2(7) |
Li(5) | 6g | 0.4800(30) | 0.2210(30) | 3/4 | 2.8(5) |
Atom | Site | x | y | z | Ueq./nm2 |
---|---|---|---|---|---|
W(1) | 12k | 0.1904(1) | 0 | 0.6257(1) | 0.6(1) |
W(2) | 8h | 2/3 | 1/3 | 0.5947(1) | 0.6(1) |
Cu(1) | 2b | 0 | 0 | 1/2 | 2.0(1) |
Cl(1) | 6g | 0.4831(4) | 0.4831(4) | 3/4 | 1.6(1) |
Cl(2) | 4e | 0 | 0 | 0.6693(6) | 7.9(3) |
O(1) | 12k | 0 | 0.8520(8) | 0.5647(4) | 1.3(2) |
O(2) | 12k | 0.3077(8) | 0 | 0.5594(4) | 1.1(2) |
O(3) | 24l | 0.3150(6) | 0.1562(6) | 0.6766(3) | 1.1(1) |
O(4) | 24l | 0.5092(7) | 0.3447(6) | 0.5644(3) | 1.2(1) |
O(5) | 8h | 2/3 | 1/3 | 0.6842(5) | 1.2(2) |
Li(1) | 12j | 0.2060(40) | 0.2060(40) | 3/4 | 1.4(2) |
Li(2) | 12k | 1/2 | 1/2 | 1/2 | 2.2(6) |
Li(3) | 12i | 0.3510(20) | z0.1755(12) | 1/2 | 2.3(5) |
Li(4) | 6f | 0.3520(30) | 0.3520(30) | 0.6319(1) | 4.2(7) |
Li(5) | 6g | 0.4800(30) | 0.2210(30) | 3/4 | 2.8(5) |
Bond | Bond length/nm | Bond | Bond length/nm | Bond | Bond length/nm |
---|---|---|---|---|---|
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(2) | 0.1787(7) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-Cl(2) | 0.2141(5) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.248(3) | Li(4)-O(2) | 0.2303(8) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.268(3) | Li(4)-O(2) | 0.2303(8) |
W(2)-O(5) | 0.1778(9) | Li(2)-O(3) | 0.2056(2) | (Li(4)-O) | 0.2158(3) |
W(2)-O(4) | 0.1785(6) | Li(2)-O(3) | 0.2056(2) | BVS | 0.096 |
W(2)-O(4) | 0.1785(6) | Li(2)-O(1) | 0.2490(3) | Li(5)-O(3) | 0.2054(8) |
W(2)-O(4) | 0.1785(6) | Li(2)-Cl(1) | 0.2710(3) | Li(5)-O(3) | 0.2054(8) |
(W(2)-O) | 0.1784(2) | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
BVS | 0.574 | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | Li(5)-Cl(1) | 0.285(4) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
(Cu(1)-O) | 0.1992(8) | (Li(3)-O) | 0.2158(3) | ||
BVS | 0.250 | BVS | 0.099 |
Bond | Bond length/nm | Bond | Bond length/nm | Bond | Bond length/nm |
---|---|---|---|---|---|
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(3) | 0.1786(6) | Li(1)-O(3) | 0.2075(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(2) | 0.1787(7) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-Cl(2) | 0.2141(5) | Li(1)-O(5) | 0.213(2) | Li(4)-O(4) | 0.2086(5) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.248(3) | Li(4)-O(2) | 0.2303(8) |
W(1)-O(1) | 0.2154(5) | Li(1)-Cl(1) | 0.268(3) | Li(4)-O(2) | 0.2303(8) |
W(2)-O(5) | 0.1778(9) | Li(2)-O(3) | 0.2056(2) | (Li(4)-O) | 0.2158(3) |
W(2)-O(4) | 0.1785(6) | Li(2)-O(3) | 0.2056(2) | BVS | 0.096 |
W(2)-O(4) | 0.1785(6) | Li(2)-O(1) | 0.2490(3) | Li(5)-O(3) | 0.2054(8) |
W(2)-O(4) | 0.1785(6) | Li(2)-Cl(1) | 0.2710(3) | Li(5)-O(3) | 0.2054(8) |
(W(2)-O) | 0.1784(2) | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
BVS | 0.574 | Li(2)-O(4) | 0.213(2) | Li(5)-O(3) | 0.2054(8) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(2) | 0.2012(6) | Li(5)-Cl(2) | 0.266(3) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | Li(5)-Cl(1) | 0.285(4) |
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(1) | 0.2346(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
Cu(1)-O(1) | 0.1992(8) | Li(3)-O(4) | 0.2117(2) | ||
(Cu(1)-O) | 0.1992(8) | (Li(3)-O) | 0.2158(3) | ||
BVS | 0.250 | BVS | 0.099 |
[1] |
RANMOHOTTI K G, JOSEPHA E, CHOI J, et al. Topochemical manipulation of perovskites: low-temperature reaction strategies for directing structure and properties. Advanced Materials, 2011,23(4):442-460.
DOI URL |
[2] | ATTFIELD J P. Principles and applications of anion order in solid oxynitrides. Crystal Growth & Design, 2013,13(10):4623-4629. |
[3] |
CLARKE S J, ADAMSON P, HERKELRATH S J C, et al. Structures, physical properties, and chemistry of layered oxychalcogenides and oxypnictides. Inorganic Chemistry, 2008,47(19):8473-8486.
DOI URL PMID |
[4] | KAGEYAMA H, HAYASHI K, MAEDA K, et al. Expanding frontiers in materials chemistry and physics with multiple anions. Nature Communication, 2018,9:772. |
[5] | KOVACHEVA D, PETROV K. Preparation of crystalline ZnSnO3 from Li2SnO3 by low-temperature ion exchange. Solid State Ionics, 1998,109(3/4):327-332. |
[6] | KOROTIN M A, ANISIMOV V I. Electronic structure and antiferromagnetism in CaCuO2 and Sr2CuO2Cl2. Materials Letters, 1990,10(1/2):28-33. |
[7] |
WU H, YU H, YANG Z, et al. Designing a deep-ultraviolet nonlinear optical material with a large second harmonic generation response. Journal of the American Chemical Society, 2013,135(11):4215-4218.
DOI URL PMID |
[8] |
WU H, PAN S, POEPPELMEIER, K R, et al. K3B6O10Cl: a new structure analogous to perovskite with a large second harmonic generation response and deep UV absorption edge. Journal of the American Chemical Society, 2011,133(20):7786-7790.
URL PMID |
[9] | ZIMMERMANN I, JOHNSSON M A. Synthetic route toward layered materials: introducing stereochemically active lone-pairs into transition metal oxohalides. Crystal Growth & Design, 2014,14(10):5252-5259. |
[10] |
BERDONOSOV P S, JANSON O, OLENEV A V, et al. Crystal structures and variable magnetism of PbCu2(XO3)2Cl2 with X=Se, Te. Dalton Transactions, 2013,42(26):9547-9554.
DOI URL PMID |
[11] |
CONSTABLE E, RAYMOND S, PETIT S, et al. Magnetic and dielectric order in the kagomelike francisite Cu3Bi(SeO3)2O2Cl. Physical Review B, 2017,96(1):014413.
DOI URL |
[12] |
BECKER R, JOHNSSON M, KREMER R K, et al. Crystal structure and magnetic properties of FeTe2O5X (X = Cl, Br): a frustrated spin cluster compound with a new Te(IV) coordination polyhedron. Journal of the American Chemical Society, 2006,128(48):15469-15475.
DOI URL PMID |
[13] |
BERDONOSOV P S, OLENEV A V, DOLGIKH V A. Strontium-copper selenite-chlorides: synthesis and structural investigation. Journal of Solid State Chemistry, 2009,182(9):2368-2373.
DOI URL |
[14] |
GOERIGK F C, SCHLEID T. Composition and crystal structure of SmSb2O4Cl revisited-and the analogy of Sm1.5Sb1.5O4Br. Zeitschrift für Anorganische und Allgemeine Chemie., 2019,645(17):1079-1084.
DOI URL |
[15] |
GENG L, LI Q, LU H, et al. Sb-based antiferromagnetic oxychlorides: MSb2O3(OH)Cl (M=Mn, Fe, Co) with 2D spin-dimer structures. Dalton Transactions, 2016,45(45):18183-18189.
DOI URL PMID |
[16] |
WANG W H, REN X. Flux growth of high-quality CoFe2O4 single crystals and their characterization. Journal of Crystal Growth, 2006,289(2):605-608.
DOI URL |
[17] |
LI J, FANG L, LUO H. et al. Li4WO5: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. Journal of the European Ceramic Society, 2016,36(1):243-246.
DOI URL |
[18] | SHELDRICK G M, SCHNEIDER T R. SHELXL: High-resolution Refinement. London: Academic Press, 1997,277:319-343. |
[19] |
SPEK A. Single-crystal structure validation with the program PLATON. Journal of Applied Crystallography, 2003,36:7-13.
DOI URL |
[20] |
CHARKIN D O, LIGHTFOOT P. Synthesis of novel lead-molybdenum and lead-tungsten oxyhalides with the pinalite structure, Pb3MoO5Cl2 and Pb3WO5Br2. American Mineralogist, 2006,91(11/12):1918-1921.
DOI URL |
[21] | OKADA H M K, MARUMO F, IWAI S. The crystal structure of K2W3O10. Acta Crystal, 1976,B32:1522-1525. |
[22] |
TAMADON F, SEPPELT K. The elusive halides VCl5, MoCl6, and ReCl6. Angewandte Chemie International Edition, 2013,52(2):767-769.
DOI URL PMID |
[23] |
GROH M F, MUELLER U. AHMED E. et al. Substitution of conventional high-temperature syntheses of inorganic compounds by near-room-temperature syntheses in ionic liquids. Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, 2013,68(10):1108-1122.
DOI URL |
[24] |
CHEN Y, ZHANG Y, FENG S. Hydrothermal synthesis and properties of pigments Chinese purple BaCuSi2O6 and dark blue BaCu2Si2O7. Dyes and Pigments, 2014,105:167-173.
DOI URL |
[25] |
LUTZ HEINZ D, SCHNEIDER M. The crystal structure of Li2MnCl4. Zeitschrift für Naturforschung B, 1990,45(11):1543-1547.
DOI URL |
[26] |
LUTZ HEINZ D, WUSSOW K, KUSKE P. Ionic conductivity, structural, IR and raman spectroscopic data of olivine, Sr2PbO4, and Na2CuF4 type lithium and sodium chlorides Li2ZnCl4 and Na2MCl4 (M=Mg, Ti, Cr, Mn, Co, Zn, Cd). Zeitschrift für Naturforschung B, 1987,42:1379-1386.
DOI URL |
[27] |
WEISSER M, TRAGL S, MEYER H J. Crystal structure of lithium hexachlorotungstate(V), LiWCl6. Zeitschrift für Kristallographie-New Crystal Structures, 2008,223(1):5-6.
DOI URL |
[28] |
LIANG Z, TANG K, SHAO Q, et al. Synthesis, crystal structure, and photocatalytic activity of a new two-layer Ruddlesden-Popper phase, Li2CaTa2O7. Journal of Solid State Chemistry, 2008,181(4):964-970.
DOI URL |
[1] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[2] | ZHAO Wei, XU Yang, WAN Yingjie, CAI Tianxun, MU Jinxiao, HUANG Fuqiang. Metal Cyanamides/Carbodiimides: Structure, Synthesis and Electrochemical Energy Storage Performance [J]. Journal of Inorganic Materials, 2022, 37(2): 140-151. |
[3] | PENG Fan, ZENG Yi. Method of Crystal Structure Identification by Using Kikuchi Diffraction Patterns [J]. Journal of Inorganic Materials, 2021, 36(11): 1193-1198. |
[4] | LI Shufang,ZHAO Shuang,ZHOU Xiao,LI Manrong. Crystal Structures, Optical, and Magnetic Properties of Zn3-xMnxTeO6 [J]. Journal of Inorganic Materials, 2020, 35(8): 895-901. |
[5] | HUANG Chong,ZHAO Wei,WANG Dong,BU Kejun,WANG Sishun,HUANG Fuqiang. Synthesis, Crystal Structure, and Electrical Conductivity of Pd-intercalated NbSe2 [J]. Journal of Inorganic Materials, 2020, 35(4): 505-510. |
[6] | Xiang-Xiong ZENG, Jin-Chao YANG, Lian ZUO, Ben-Ben YANG, Jun QIN, Zhi-Hang PENG. Li/Ce/La Multidoping on Crystal Structure and Electric Properties of CaBi2Nb2O9 Piezoceramics [J]. Journal of Inorganic Materials, 2019, 34(4): 379-386. |
[7] | HUANG Long, DING Shi-Hua, ZHANG Xiao-Yun, YAN Xin-Kan, LI Chao, ZHU Hui. Structure and Microwave Dielectric Property of BaAl2Si2O8 with Li2O-B2O3-SiO2 Glass Addition [J]. Journal of Inorganic Materials, 2019, 34(10): 1091-1096. |
[8] | CHENG Guo-Feng, RUAN Yin-Jie, SUN Yue, YIN Han-Di, XIE Qi-Yun. Stoichiometric Ratio on Phase Transformation in Reaction Sintering of BiFeO3 Ceramics Study: a High Temperature X-ray Diffraction Study [J]. Journal of Inorganic Materials, 2019, 34(10): 1035-1040. |
[9] | ZHOU Xin, MA Lei, LIU Tao, GUO Yong-Bin, WANG Dao, DONG Pei-Lin. Crystal Structure and Magnetic Property of Si3N4/FePd/Si3N4 Thin Films [J]. Journal of Inorganic Materials, 2018, 33(8): 909-913. |
[10] | MENG Fan-Bin, MA Xiao-Fan, ZHANG Wei, WU Guang-Heng, ZHANG Yu-Jie. Structure and Magnetic Property of Fe and Mn Doped Spinel Co2MnO4 [J]. Journal of Inorganic Materials, 2017, 32(6): 609-614. |
[11] | WANG Qing-Qing, SHI Jian, LI Huan-Ying, CHEN Xiao-Feng, PAN Shang-Ke, BIAN Jian-Jiang, REN Guo-Hao. Optical and Scintillation Properties of Cs2LiYCl6:Ce Crystal [J]. Journal of Inorganic Materials, 2017, 32(2): 175-179. |
[12] | DAN Meng, ZHANG Qian, ZHONG Yun-Qian, ZHOU Ying. Preparation of MnS with Different Crystal Phases for Photocatalytic H2 Production from H2S [J]. Journal of Inorganic Materials, 2017, 32(12): 1308-1314. |
[13] | YANG Zhi-Sheng, KE Wei-Fang, WANG Yan-Xiang, HUANG Li-Qun, GUO Ping-Chun, ZHU Hua. Preparation and Characterization of a Novel Hybrid Perovskite (HOC2H4NH3)2CuCl4 [J]. Journal of Inorganic Materials, 2017, 32(10): 1063-1067. |
[14] | ZHANG Yao, DING Shi-Hua, LIU Yang-Qiong, DUAN Shao-Ying, XIAO Peng, HAN Lin-Cai. Crystal Structure and Microwave Dielectric Property of Ba1-xMgxAl2Si2O8 [J]. Journal of Inorganic Materials, 2017, 32(1): 91-95. |
[15] | CUI Ying-Xin, XU Ming-Sheng, XU Xian-Gang, HU Xiao-Bo. High Resolution X-ray Diffraction Analysis of Defect Density of Gallium Nitride Epitaxial Layer [J]. Journal of Inorganic Materials, 2015, 30(10): 1094-1098. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||