Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (8): 902-908.DOI: 10.15541/jim20190462
Special Issue: 功能材料论文精选(二):发光材料(2020); 【虚拟专辑】LED发光材料
• RESEARCH PAPER • Previous Articles Next Articles
PENG Yuehong1,2(),REN Weizhou1,QIU Jianbei1,HAN Jin1,YANG Zhengwen1,SONG Zhiguo1()
Received:
2019-09-06
Revised:
2019-11-04
Published:
2020-08-20
Online:
2020-03-06
Supported by:
CLC Number:
PENG Yuehong,REN Weizhou,QIU Jianbei,HAN Jin,YANG Zhengwen,SONG Zhiguo. Upconversion Luminescence and Temperature Sensing Properties of Layered BiOCl: Er3+ under 1550 nm Excitation[J]. Journal of Inorganic Materials, 2020, 35(8): 902-908.
Fig. 1 XRD patternsof BiOCl with different Er3+ concentrations (a), effect of Er3+ concentration on the main diffraction peak near 2θ = 32o-34.5o (b), SEM image of BiOCl:Er3+(c), and the structure modelof BiOCl crystal (d)
Fig. 2 UC spectra (a) of BiOCl with different Er3+ concentrations (from 1mol% to 5mol%) under 1550 nm excitation and the dependence of Ired/Igreen on Er3+ concentrations (b) Insets in (a) are the enlarged spectra in the violet region and photograph of BiOCl:4mol%Er3+
Fig. 3 Dependence of the UC emission on power (a), energy-level diagram of Er3+ and possible up-conversion mechanism of BiOCl:Er3+ under 1550 nm excitation (b) Solid lines show absorption and emission, while dashed lines represent nonradiative relaxation
Fig. 4 Normalized up-conversion emission spectra of BiOCl:4mol%Er3+ under 1550 nm excitation at various temperatures (300-560 K) (a), relative intensities of 525, 542 and 670 nm emissions as a function of temperature (b), and the dependence of Ired/Igreen on temperature (c)
Fig. 5 Dependence of the fluorescence intensity ratio, the absolute sensitivity (SA) and the relative sensitivity (SR) on temperature (a, c) I670/I542; (b, d) I525/I542 Insets in (a) and (b) show temperature-induced switching of I670/I542 and I525/I542 (alternating between 300 and 560 K), respectively
UC materials | R | Temperature range/K | SA/(×10-3, K-1) | SR/(%, K-1) | Reference |
---|---|---|---|---|---|
NaYF4:Er3+/Yb3+/Li+ | I523/I547 | 300-453 | 5.9 | 1.46 | [11] |
KMnF3:Yb3+/Er3+ | Ired/Igreen | 303-390 | 11.3 | 5.7 | [2] |
YWO6:0.1Yb3+/0.02Er3+ | I524/I675 | 303-563 | 2.2 | 1.2 | [8] |
Ba2In2O5:Yb3+/Er3+ | I658/I549 | 303-563 | 480 | — | [10] |
BiOCl:Er3+ | I525/I542 | 300-560 | 4.23 | 1.15 | This work |
BiOCl:Er3+ | I670/I542 | 300-560 | 95.3 | 1.19 | This work |
Table 1 Maximum temperature sensitivity for several Er3+ doped UC materials
UC materials | R | Temperature range/K | SA/(×10-3, K-1) | SR/(%, K-1) | Reference |
---|---|---|---|---|---|
NaYF4:Er3+/Yb3+/Li+ | I523/I547 | 300-453 | 5.9 | 1.46 | [11] |
KMnF3:Yb3+/Er3+ | Ired/Igreen | 303-390 | 11.3 | 5.7 | [2] |
YWO6:0.1Yb3+/0.02Er3+ | I524/I675 | 303-563 | 2.2 | 1.2 | [8] |
Ba2In2O5:Yb3+/Er3+ | I658/I549 | 303-563 | 480 | — | [10] |
BiOCl:Er3+ | I525/I542 | 300-560 | 4.23 | 1.15 | This work |
BiOCl:Er3+ | I670/I542 | 300-560 | 95.3 | 1.19 | This work |
Er3+ concentration | R | SA/(×10-3, K-1) | SR/(%, K-1) |
---|---|---|---|
4mol% | I670/I542=188.52exp(-1070.58/T) | 95.3 | 1.19 |
5mol% | I670/I542=231.85exp(-994.74/T) | 126.2 | 1.11 |
Table 2 Maximum temperature sensitivity for BiOCl with different Er3+ concentrations
Er3+ concentration | R | SA/(×10-3, K-1) | SR/(%, K-1) |
---|---|---|---|
4mol% | I670/I542=188.52exp(-1070.58/T) | 95.3 | 1.19 |
5mol% | I670/I542=231.85exp(-994.74/T) | 126.2 | 1.11 |
[1] |
DONG BIN, CAO BAO-SHENG, HE YANG-YANG, et al. Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Advanced Materials, 2012,24(15):1987-1993.
DOI URL PMID |
[2] |
CUI XIANG-SHUI, CHENG YAO, LIN HANG, et al. Towards ultra-high sensitive colorimetric nanothermometry: constructing thermal coupling channel for electronically independent levels. Sensors and Actuators B: Chemical, 2018,256:498-503.
DOI URL |
[3] |
GAO YAN, HUANG FENG, LIN HANG, et al. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Advanced Functional Materials, 2016,26(18):3139-3145.
DOI URL |
[4] |
SILVA A F, ELAN F, FALCAO-FILHO E L, et al. Thermal sensitivity of frequency upconversion in Al4B2O9: Yb 3+/Nd 3+ nanoparticles . Journal of Materials Chemistry C, 2017,5(5):1240-1246.
DOI URL |
[5] |
JIANG SHA, ZENG PENG, LIAO LI-QING, et al. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4: Yb 3+/Er 3+ nanocrystals . Journal of Alloys and Compounds, 2014,617:538-541.
DOI URL |
[6] | TONG LI-LI, LI XIANG-PING, HUA RUI-NIAN, et al. Optical temperature sensing properties of Yb 3+/Tm 3+ co-doped NaLuF4 crystals, Current Applied Physics, 2017,17(7):999-1004. |
[7] |
PANDEY A, RAI V K. Improved luminescence and temperature sensing performance of Ho 3+-Yb 3+-Zn 2+: Y2O3 phosphor . Dalton Trans., 2013,42(30):11005-11011.
DOI URL PMID |
[8] |
ZHANG JIA, JI BAO-WEI, CHEN GUI-BIN, et al. Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorganic Chemistry, 2018,57(9):5038-5047.
DOI URL PMID |
[9] |
ZHANG JIA, CHEN GUI-BIN, ZHAI ZHANG-YIN, et al. Optical temperature sensing using upconversion luminescence in rare-earth ions doped Ca2Gd8(SiO4)6O2 phosphors. Journal of Alloys and Compounds, 2019,771:838-846.
DOI URL |
[10] |
WANG ZHI-YING, JIAO HUAN, FU ZUO-LING. Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor. Journal of Luminescence, 2019,206:273-277.
DOI URL |
[11] |
DUBEY A, SONI A K, KUMARI A, et al. Enhanced green upconversion emission in NaYF4: Er 3+/Yb 3+/Li + phosphors for optical thermometry . Journal of Alloys and Compounds, 2017,693:194-200.
DOI URL |
[12] |
DU PENG, HUANG XIAO-YONG, YU J S. Yb 3+ concentration dependent upconversion luminescence and temperature sensing behavior in Yb 3+/Er 3+ codoped Gd2MoO6 nanocrystals prepared by a facile citric-assisted Sol-Gel method . Inorganic Chemistry Frontiers, 2017,4(12):1987-1995.
DOI URL |
[13] |
NIU SI-YING, ZHANG RUO-YU, ZHOU XIAN-JU, et al. The enhanced photocatalytic activity of Yb 3+-Ho 3+/Er 3+ co-doped 3D BiOCl flower . Dyes and Pigments, 2018,149:462-469.
DOI URL |
[14] |
LI YONG-JIN, SONG ZHI-GUO, LI CHEN, et al. High multi- photon visible upconversion emissions of Er 3+ singly doped BiOCl microcrystals: a photon avalanche of Er 3+ induced by 980 nm excitation . Applied Physics Letters, 2013,103(23):231104.
DOI URL |
[15] |
LI YONG-JIN, HU RUI, ZHAGN XIANG-ZHOU, et al. Emergence of photoluminescence enhancement of Eu 3+ doped BiOCl single-crystalline nanosheets at reduced vertical dimensions . Nanoscale, 2018,10(10):4865-4871.
DOI URL PMID |
[16] |
LI YONG-JIN, SONG ZHI-GUO, YAO LU, et al. Morphology/dimensionality induced tunable upconversion luminescence of BiOCl: Yb 3+/Er 3+ nano/microcrystals: intense single-band red emission and underlying mechanisms . CrystEngComm, 2018,20(20):2850-2860.
DOI URL |
[17] |
LIU TONG, SONG YA-PAI, WANG SHA-SHA, et al. Two distinct simultaneous NIR looping behaviours of Er 3+ singly doped BiOBr: The underlying nature of the Er 3+ ion photon avalanche emission induced by a layered structure . Journal of Alloys and Compounds, 2019,779:440-449.
DOI URL |
[18] |
WU WEI-WEI, CHEN DA-QIN, ZHOU YANG, et al. Near-single- band red upconversion luminescence in Yb/Er: BiOX (X = Cl, Br) nanoplatelets. Journal of Alloys and Compounds, 2016,682:275-283.
DOI URL |
[19] |
HUANG XIAO-YONG, LI BIN, GUO HENG. Synthesis, photoluminescence, cathodoluminescence, and thermal properties of novel Tb 3+-doped BiOCl green-emitting phosphors . Journal of Alloys and Compounds, 2017,695:2773-2780.
DOI URL |
[20] |
DU PENG, LUO LAI-HUI, YU J S. Tunable color upconverison emissions in erbium(III)-doped BiOCl microplates for simultaneous thermometry and optical heating. Microchimica Acta, 2017,184(8):2661-2669.
DOI URL |
[21] |
ZHANG GONG, SONG FENG, MING CHENG-GUO, et al. Photoluminescence properties and pump-saturation effect of Er 3+/Yb 3+ co-doped Y2Ti2O7 nanocrystals . Journal of Luminescence, 2012,132(3):774-779.
DOI URL |
[22] |
LIN HAO, XU DE-KANG, LI AN-MING, et al. Enhanced red upconversion emission and its mechanism in Yb 3+-Er 3+ codoped α-NaLuF4 nanoparticles . New Journal of Chemistry, 2017,41(3):1193-1201.
DOI URL |
[23] |
POLLNAU M, GAMELIN D R, LUTHI S R, et al. Power dependence of upconversion luminescence in lanthanide and transition- metal-ion systems. Physical Review B, 2000,61(5):3337-3346.
DOI URL |
[24] |
PANDEY A, RAI V K, KUMAR V, et al. Upconversion based temperature sensing ability of Er 3+-Yb 3+ codoped SrWO4: an optical heating phosphor . Sensors and Actuators B: Chemical, 2015,209:352-358.
DOI URL |
[25] |
CHEN DA-QIN, XU MIN, HUAGN PING. Core@shell upconverting nanoarchitectures for luminescent sensing of temperature. Sensors and Actuators B: Chemical, 2016,231:576-583.
DOI URL |
[26] |
LIU QUN, LI YONG-JIN, SONG ZHI-GUO, et al. Effect of Zn 2+ dopant on photon avalanche upconversion behavior of BiOCl: Er 3+ crystals . Journal of Rare Earths, 2015,33(10):1098-1103.
DOI URL |
[27] |
GUO YANG-YANG, LI JIAN-YONG, SUN JIAN. Oxygen vacancy-assistant enhancement of photoluminescence performance of Eu 3+ and La 3+-codoped BiOCl ultrathin nanosheets . Journal of Luminescence, 2019,208:267-272.
DOI URL |
[28] |
YIN XIU-MEI, WANG HONG, XING MING-MING, et al. High color purity red emission of Y2Ti2O7:Yb 3+, Er 3+ under 1550 and 980 nm excitation . Journal of Luminescence, 2017,182:183-188.
DOI URL |
[1] | ZHANG Zhijie,HUANG Hairui,CHENG Kun,GUO Shaoke. High Efficient Carbon Quantum Dots/BiOCl Nanocomposite for Photocatalytic Pollutant Degradation [J]. Journal of Inorganic Materials, 2020, 35(4): 491-496. |
[2] | ZHANG Wei,GAO Peng,HOU Chengyi,LI Yaogang,ZHANG Qinghong,WANG Hongzhi. Chip Sensor for pH and Temperature Monitoring Based on ZnO Composite [J]. Journal of Inorganic Materials, 2020, 35(4): 416-422. |
[3] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
[4] | CHEN Fan-Li, LI Yong-Jin, ZHANG Xiang-Zhou, XU Zhu-Yuan, HU Rui, QIU Jian-Bei, YANG Zheng-Wen, SONG Zhi-Guo. Anomalous Emission Performance of Eu3+-activated BiOCl Layered Phosphors Induced by Doping Zn2+ [J]. Journal of Inorganic Materials, 2017, 32(8): 877-883. |
[5] | LI Yong-Jin, LIU Qun, ZHOU Yu-Ting, QIU Jian-Bei, SONG Zhi-Guo. Near-infrared Upconversion Luminescences Properties of Yb3+-Tm3+ Co-doped BiOBr Nanocrystals [J]. Journal of Inorganic Materials, 2016, 31(3): 279-284. |
[6] | CHEN Jian-Chai, YU Chang-Lin, LI Jia-De, FANG Wen, HE Hong-Bo. Preparation by Grinding-calcination and Photocatalytic Performance of La2O3/BiOCl Composite Photocatalysts [J]. Journal of Inorganic Materials, 2015, 30(9): 943-949. |
[7] | ZHU Mei-Juan, YU Jian-Ding, ZHANG Ming-Hui, GU Yan-Jing, LI Qin, FANG Bi-Jun, ZHAO Hong-Yang, SHEN Qing. Upconversion Luminescence of Er3+/Yb3+ Co-doped La2O3-TiO2-ZrO2 Glasses Prepared by Containerless Processing [J]. Journal of Inorganic Materials, 2015, 30(4): 391-396. |
[8] |
ZHANG Ji-Hong, TAO Hai-Zheng, GU Shao-Xuan, ZHANG Gao-Ke, LIU Chao, ZHAO Xiu-Jian.
Upconversion Luminescence of Er3+ Doped Chalcohalide Glasses and Its Potential Application for Si Solar Cell Efficiency Enhancement [J]. Journal of Inorganic Materials, 2015, 30(3): 245-248. |
[9] | ZHANG Ming-Hui, YU Jian-Ding, PAN Xiu-Hong, CHENG Yu-Xing, LIU Yan. Preparation and Upconversion Luminescence of Nd3+/Yb3+ Co-doped La2O3-TiO2-ZrO2 Glass-ceramics [J]. Journal of Inorganic Materials, 2013, 28(8): 896-900. |
[10] | XU Shi-Qing,ZHANG Jun-Jie,DAI Shi-Xun,SUN Hong-Tao,HU Li-Li,JIANG Zhong-Hong. Upconversion Luminescence Research of Er3+-doped Oxyfluoride Tellurite Glasses [J]. Journal of Inorganic Materials, 2004, 19(6): 1415-1418. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||