Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (9): 1023-1028.DOI: 10.15541/jim20190542
Special Issue: 环境材料论文精选(2020)
• RESEARCH PAPER • Previous Articles Next Articles
ZHANG Xincong(),GUO Ke,PENG Lianlian,WU Jieyu,ZHANG Fumin,ZHU Weidong,FU Yanghe()
Received:
2019-10-22
Revised:
2020-01-17
Published:
2020-09-20
Online:
2020-03-03
Supported by:
CLC Number:
ZHANG Xincong,GUO Ke,PENG Lianlian,WU Jieyu,ZHANG Fumin,ZHU Weidong,FU Yanghe. Degradation of Dye Wastewater over NH2-UiO-66: Piezoelectrically Induced Mechano-Catalytic Effect[J]. Journal of Inorganic Materials, 2020, 35(9): 1023-1028.
Fig. 1 Characterizations of NH2-UiO-66 (a) XRD patterns; (b) FT-IR spectra; (c) SEM image; (d) N2 adsorption-desorption isotherm; (e) Ferroelectric hysteresis loop
Fig. 5 Degradation results of RhB solution under different conditions (a) NH2-UiO-66 without vibration; (b) Vibration without catalyst; (c) Vibration+NH2-UiO-66+EDTA; (d) Vibration+NH2-UiO-66+BQ; (e) Vibration+NH2-UiO-66+IPA; (f) Vibration+NH2-UiO-66
[1] |
GUPTA V K, PATHANIA D, AGARWAL S,et al. Adsorptional photocatalytic degradation of methylene blue onto pectin-CuS nanocomposite under solar light. Journal of Hazardous Materials, 2012,243:179-186.
DOI URL PMID |
[2] | XIA Y T, JIA Y M, QIAN W Q, et al. Pyroelectrically induced pyro-electro-chemical catalytic activity of BaTiO3 nanofibers under room-temperature cold-hot cycle excitations. Metals, 2017,7(4):122. |
[3] |
CHEN C C, MA W H, ZHAO J C. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chemical Society Reviews, 2010,39(11):4206-4219.
URL PMID |
[4] |
DU W M, LIU L X, ZHOU K K, et al. Black lead molybdate nanoparticles: facile synthesis and photocatalytic properties responding to visible light. Applied Surface Science, 2015,328:428-435.
DOI URL |
[5] | MALWALl D, GOPINATH P. Enhanced photocatalytic activity of hierarchical three dimensional metal oxide@CuO nanostructures towards the degradation of Congo Red dye under solar radiation. Catalysis Science & Technology, 2016,6(12):4458-4472. |
[6] |
BATABYAL S K, LU S E, VITTAL J J. Synthesis, characterization, and photocatalytic properties of In2S3, ZnIn2S4, and CdIn2S4 nanocrystals. Crystal Growth & Design, 2016,16(4):2231-2238.
DOI URL |
[7] |
XU J, WANG Z P, ZHU Y F. Enhanced visible-light-driven photocatalytic disinfection performance and organic pollutant degradation activity of porous g-C3N4 nanosheets. ACS Applied Materials & Interfaces, 2017,9(33):27727-27735.
DOI URL PMID |
[8] |
LIU H, JIN Z T, XU Z Z. Hybridization of Cd0.2Zn0.8S with g-C3N4 nanosheets: a visible-light-driven photocatalyst for H2 evolution from water and degradation of organic pollutants. Dalton transactions, 2015,44(32):14368-14375.
DOI URL PMID |
[9] | GAO B, LIU L F, LIU J D, et al. Photocatalytic degradation of 2,4,6-tribromophenol on Fe2O3 or FeOOH doped ZnIn2S4 heterostructure: insight into degradation mechanism. Applied Catalysis B: Environmental, 2014,147:929-939. |
[10] | IKEDA S, TAKATA T, KONDO T, et al. Mechano-catalytic overall water splitting. Chemical Communications, 1998(20):2185-2186. |
[11] |
XU X L, JIA Y M, XIAO L B,et al. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro- chemical coupling. Chemosphere, 2018,193:1143-1148.
URL PMID |
[12] | HONG K S, XU H, KONISHI H,et al. Piezoelectrochemical effect: A new mechanism for azo dye decolorization in aqueous solution through vibrating piezoelectric microfibers. The Journal of Physical Chemistry C, 2012,116(24):13045-13051. |
[13] | LIN H, WU Z, JIA Y M, et al. Piezoelectrically induced mechano- catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers. Applied Physics Letters, 2014,104(16):162907-162911. |
[14] |
YOU H L, JIA Y M, WU Z,et al. Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis. Electrochemistry Communications, 2017,79:55-58.
DOI URL |
[15] | XU X L, WU Z, XIAO L B,et al. Strong piezo-electro-chemical effect of piezoelectric BaTiO3 nanofibers for vibration-catalysis. Journal of Alloys and Compounds, 2018,762:915-921. |
[16] |
LEE J, FARHA O K, ROBERTS J, et al. Metal-organic framework materials as catalysts. Chemical Society Reviews, 2009,38(5):1450-1459.
DOI URL PMID |
[17] |
ZHANG T, LIN W. Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chemical Society Reviews, 2014,43(16):5982-5993.
URL PMID |
[18] |
HAO S Y, HOU S X, HAO Z C,et al. A new three-dimensional bis(benzimidazole)-based cadmium(II) coordination polymer. Spectrochim Acta A Mol. Biomol. Spectrosc., 2018 189:613-620.
URL PMID |
[19] | Xu G J, MENG Z S, GUO X J, et al. Molecular simulations on CO2 adsorption and adsorptive separation in fullerene impregnated MOF-177, MOF-180 and MOF-200. Computational Materials Science, 2019,168:58-64. |
[20] |
EDUBILLI S, GUMMA S. A systematic evaluation of UiO-66 metal organic framework for CO2/N2 separation. Separation and Purification Technology, 2019,224:85-94.
DOI URL |
[21] |
AHMADIJOKANI F, AHMADIPOUYA S, MOLAVI H, et al. Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation. Dalton Transactions, 2019,48:13555-13566.
URL PMID |
[22] |
LI, D J, ZHANG S S, FENG X, et al. A novel peroxidase mimetic Co-MOF enhanced luminol chemiluminescence and its application in glucose sensing. Sensors and Actuators B: Chemical, 2019,296:126631-126639.
DOI URL |
[23] |
LIU Q Q, ZHANG S H, YANG J, et al. A water-stable La-MOF with high fluorescence sensing and supercapacitive performances. The Analyst, 2019,144(15):4534-4544.
URL PMID |
[24] |
GAO T, DONG B X, SUN Y, et al. Fabrication of a water-stable luminescent MOF with an open Lewis basic triazolyl group for the high-performance sensing of acetone and Fe3+ ions. Journal of Materials Science, 2019,54(15):10644-10655.
DOI URL |
[25] |
ALVARO M, CARBONELL E, FERRER B, et al. Semiconductor behavior of a metal-organic framework (MOF). Chemistry, 2007,13(18):5106-5112.
DOI URL PMID |
[26] | CHENG C, FANG J Z, LU S Y, et al. Zirconium metal-organic framework supported highly-dispersed nanosized BiVO4 for enhanced visible-light photocatalytic applications. Journal of Chemical Technology & Biotechnology, 2016,91(11):2785-2792. |
[27] | FENG S, WANG R B, FENG S S. et al. Synthesis of Zr-based MOF nanocomposites for efficient visible-light photocatalytic degradation of contaminants. Research on Chemical Intermediates, 2018,45(3):1263-1279. |
[28] |
MU X X, JIANG J F, CHAO F F,et al. Ligand modification of UiO-66 with an unusual visible light photocatalytic behavior for RhB degradation. Dalton Transactions, 2018,47(6):1895-1902.
DOI URL PMID |
[29] |
DING J, YANG Z Q, HE C, et al. UiO-66(Zr) coupled with Bi2MoO6 as photocatalyst for visible-light promoted dye degradation. Journal of Colloid and Interface Science, 2017,497:126-133.
URL PMID |
[30] |
ZHANG Y K, JIN Z. Effective electron-hole separation over a controllably constructed WP/UiO-66/CdS heterojunction to achieve efficiently improved visible-light-driven photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2019,21(16):8326-8341.
DOI URL PMID |
[31] |
WANG Z J, JIN Z L, YUAN H, et al. Orderly-designed Ni2P nanoparticles on g-C3N4 and UiO-66 for efficient solar water splitting. Journal of Colloid and Interface Science, 2018,532:287-299.
DOI URL PMID |
[32] |
TIAN P, HE X, Li W X, et al. Zr-MOFs based on keggin-type polyoxometalates for photocatalytic hydrogen production. Journal of Materials Science, 2018,53:12016-12029.
DOI URL |
[33] | WANG Y, YU Y, LI R, et al. Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66- NH2 octahedrons. Journal Materinals Chemistry A, 2017,5(38):20136-20140. |
[34] |
WANG Y N, GUO L, ZENG Y Q, et al. Amino-assisted NH2-UiO- 66 anchored on porous g-C3N4 for enhanced visible-light-driven CO2 reduction. ACS Applied Materials & Interfaces, 2019,11(34):30673-30681.
DOI URL PMID |
[35] |
CHEN L Y, YU F Y, SHEN X S, et al. N-CND modified NH2-UiO- 66 for photocatalytic CO2 conversion under visible light by a photo- induced electron transfer process. Chemical Communications, 2019,55(33):4845-4848.
URL PMID |
[36] |
PAN J P, XU Q H, FANG L, et al. Ru nanoclusters supported on HfO2@CN derived from NH2-UiO-66(Hf) as stable catalysts for the hydrogenation of levulinic acid to γ-valerolactone. Catalysis Communications, 2019,128:105710-105715.
DOI URL |
[37] | ZHENG S, YANG P Y, ZHANG F M, et al. Pd nanoparticles encaged within amine-functionalized metal-organic frameworks: catalytic activity and reaction mechanism in the hydrogenation of 2,3,5- trimethylbenzoquinone. Chemical Engineering Journal, 2017,328:977-987. |
[38] |
JUN B M, KIM S, HEO J, et al. Enhanced sonocatalytic degradation of carbamazepine and salicylic acid using a metal-organic framework. Ultrasonics Sonochemistry, 2019,56:174-182.
DOI URL PMID |
[39] |
SUN Y, GAO J F, CHENG Y, et al. Design of the hybrid metal- organic frameworks as potential supramolecular piezo-/ferroelectrics. The Journal of Physical Chemistry C, 2019,123(5):3122-3129.
DOI URL |
[40] | HUANG A, WAN L L, CARO J. Microwave-assisted synthesis of well-shaped UiO-66-NH2 with high CO2 adsorption capacity. Materials Research Bulletin, 2018 98:308-313. |
[41] | GE J, LIU L L, SHEN Y H. Facile synthesis of amine-functionalized UiO-66 by microwave method and application for methylene blue adsorption. Journal of Porous Materials, 2016,24:647-655. |
[42] | BOWEN C R, KIM H A, WEAVER P M, et al. Piezoelectric and ferroelectric materials and structures for energy harvesting applications. Energy & Environmental Science, 2014,7:25-44. |
[43] | LI W J, LI D Z, ZHANG W J, et al. Microwave synthesis of ZnxCd1-xS nanorods and their photocatalytic activity under visible light. The Journal of Physical Chemistry C, 2010,114:2154-2159. |
[1] | LAN Qing, SUN Shengrui, WU Ping, YANG Qingfeng, LIU Yangqiao. Co-doped CuO/Visible Light Synergistic Activation of PMS for Degradation of Rhodamine B and Its Mechanism [J]. Journal of Inorganic Materials, 2021, 36(11): 1171-1177. |
[2] | Shi-Qiang LUO, Chun-Man ZHENG, Wei-Wei SUN, Wei XIE, Jian-Huang KE, Shuang-Ke LIU, Xiao-Bin HONG, Yu-Jie LI, Jing XU. Controllable Preparation of Co-NC Nanoporous Carbon Derived from ZIF-67 for Advanced Lithium-sulfur Batteries [J]. Journal of Inorganic Materials, 2019, 34(5): 502-508. |
[3] | ZHANG Yi-Qing, LIU Li, ZHANG Shu-Juan, WAN Zheng-Rui, LIU Hong-Ying, ZHOU Li-Qun. Preparation and Dehydrogenation Property of NH2-UIO-66 Supported RuCuMo Nanocatalyst [J]. Journal of Inorganic Materials, 2019, 34(12): 1316-1324. |
[4] | HAN Li, ZHANG Xiao-Min, WU De-Yong. MoS2 Quantum Dots Decorated NH2-MIL-125 Heterojunction: Preparation and Visible Light Photocatalytic Performance [J]. Journal of Inorganic Materials, 2019, 34(11): 1205-1209. |
[5] | WANG Xiang-Xue, YU Shu-Jun, WANG Xiang-Ke. Removal of Radionuclides by Metal-organic Framework-based Materials [J]. Journal of Inorganic Materials, 2019, 34(1): 17-26. |
[6] | DU Shu-Hui, LIU Ya-Guang, KONG Ling-Yin, ZHANG Jian, LIU Hai-Ou, ZHANG Xiong-Fu. Seeded Secondary Growth Synthesis of ZIF-8 Membranes Supported on α-Al2O3 Ceramic Tubes [J]. Journal of Inorganic Materials, 2012, 27(10): 1105-1111. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||