Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 759-768.DOI: 10.15541/jim20190401
Special Issue: 生物材料论文精选(2020)
• REVIEW • Previous Articles Next Articles
ZHANG Xiaoxu1,2,ZHU Dongbin1,2,3(),LIANG Jinsheng1,2
Received:
2019-08-09
Revised:
2019-10-02
Published:
2020-07-20
Online:
2020-01-20
Supported by:
CLC Number:
ZHANG Xiaoxu,ZHU Dongbin,LIANG Jinsheng. Progress on Hydrothermal Stability of Dental Zirconia Ceramics[J]. Journal of Inorganic Materials, 2020, 35(7): 759-768.
Fig. 4 Ageing kinetics analysis with 3Y-TZP by μ-Raman spectroscopy[33] (a) m-ZrO2 content depth and corresponding optical images; (b)Transformed depth varies with ageing time
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
Table 1 Proposed models for monoclinic phase quantification by Raman spectroscopy
Equation | |
---|---|
Linear | ${{V}_{\text{m}}}=\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{k(I_{\text{t}}^{147}+\delta I_{\text{t}}^{265})+I_{\text{m}}^{181}+I_{\text{m}}^{190}}$ Clarke and Adar[ Katagiri, et al.[ Lim, et al.[ |
Power law[ | ${{V}_{\text{m}}}=\sqrt{0.19-\frac{0.13}{\frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{m}}^{181}+I_{\text{m}}^{190}}-1.01}}-0.56$ |
Logarithmic[ | ${{V}_{\text{m}}}=0.65+0.39\lg \left( \frac{I_{\text{m}}^{181}+I_{\text{m}}^{190}}{I_{\text{t}}^{147}+I_{\text{t}}^{265}+I_{\text{m}}^{181}+I_{\text{m}}^{190}} \right)$ |
Fig. 8 Morphologies of samples treated with surface nitrogen after aging[60] (a) LSCM image of N-1600; (b) SEM image of N-1400; AFM images of N-1400 (c) surface and (d) bulk
[1] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[2] | FERRARI M, VICHI A, ZARONE F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dental Materials, 2015,31(3):63-76. |
[3] |
GAUTAM C, JOYNER J, GAUTAM A, et al. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications. Dalton Transactions, 2016,45(48):19194-19215.
DOI URL PMID |
[4] |
GARVIE R C, HANNINK R H, PASCOE R T. Ceramic steel? Nature, 1975,258(5537):703-704.
DOI URL |
[5] |
DENRY I, KELLY J R. State of the art of zirconia for dental applications. Dental Materials, 2008,24(3):299-307.
DOI URL |
[6] |
TURON-VINAS M, ANGLADA M. Strength and fracture toughness of zirconia dental ceramics. Dental Materials, 2018,34(3):365-375.
DOI URL PMID |
[7] |
DENRY I, HOLLOWAY J. Ceramics for dental applications: a review. Materials, 2010,3(1):351-368.
DOI URL |
[8] |
NAKONIECZNY D S, ZIĘBOWICZ A, PASZENDA Z K, et al. Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications: a review. Biocybernetics and Biomedical Engineering, 2017,37(1):229-245.
DOI URL |
[9] |
LI R W K, CHOW T W, MATINLINNA J P. Ceramic dental biomaterials and CAD/CAM technology: state of the art. Journal of Prosthodontic Research, 2014,58(4):208-216.
DOI URL |
[10] | ZHU DONG-BIN, CHU RUI-QING, ZHANG XIAO-XU, et al. Progress in mechanism of ceramics inkjet printing. Journal of Mechanical Engineering, 2017,53(13):108-117. |
[11] |
SIVARAMAN K, CHOPRA A, NARAYAN A I, et al. Is zirconia a viable alternative to titanium for oral implant? a critical review. Journal of Prosthodontic Research, 2018,62(2):121-133.
DOI URL PMID |
[12] |
DURACCIO D, MUSSANO F, FAGA M G. Biomaterials for dental implants: current and future trends. Journal of Materials Science, 2015,50(14):4779-4812.
DOI URL |
[13] |
KOBAYASHI K, KUWAJIMA H, MASAKI T. Phase change and mechanical properties of ZrO2-Y2O3 solid electrolyte after ageing. Solid State Ionics, 1981 3-4:489-493.
DOI URL |
[14] |
KOSMAČ T, KOCJAN A. Ageing of dental zirconia ceramics. Journal of the European Ceramic Society, 2012,32(11):2613-2622.
DOI URL |
[15] |
PEREIRA G K R, VENTURINI A B, SILVESTRI T, et al. Low-temperature degradation of Y-TZP ceramics: a systematic review and meta-analysis. Journal of the Mechanical Behavior of Biomedical Materials, 2016,55:151-163.
DOI URL PMID |
[16] |
ÖZCAN M, VOLPATO C Â M, FREDEL M C. Artificial aging of zirconium dioxide: an evaluation of current knowledge and clinical relevance. Current Oral Health Reports, 2016,3(3):193-197.
DOI URL |
[17] |
WU Z K, LI N, YAN J Z, et al. Effect of hydrothermal aging on the phase mtability, microstructure and mechanical properties of dental 3Y-TZP ceramics. Applied Mechanics and Materials, 2014,529:251-255.
DOI URL |
[18] | LUGHI V, SERGO V. Low temperature degradation aging of zirconia: a critical review of the relevant aspects in dentistry. Denal Materials, 2010,26(8):807-820. |
[19] |
LANGE F F, DUNLOP G L, DAVIS B I. Degradation during aging of transformationt toughened ZrO2-Y2O3 materials at 250 ℃. Journal of the American Ceramic Society, 1986,69(3):237-240.
DOI URL |
[20] |
SATO T, SHIMADA M. Transformation of yttria-doped tetragonal ZrO2 polycrystals by annealing in water. Journal of the American Ceramic Society, 1985,68(6):356-356.
DOI URL |
[21] |
YOSHIMURA M, NOMA T, KAWABATA K, et al. Role of H2O on the degradation process of Y-TZP. Journal of Materials Science Letters, 1987,6(4):465-467.
DOI URL |
[22] |
GUO X. Hydrothermal degradation mechanism of tetragonal zirconia. Journal of Materials Science, 2001,36(15):3737-3744.
DOI URL |
[23] |
GUO X, SCHOBER T. Water incorporation in tetragonal zirconia. Journal of the American Ceramic Society, 2004,87(4):746-748.
DOI URL |
[24] |
LANCE M J, VOGEL E M, REITH L A, et al. Low-temperature aging of zirconia ferrules for optical connectors. Journal of the American Ceramic Society, 2001,84(11):2731-2733.
DOI URL |
[25] |
HARAGUCHI K, SUGANO N, NISHII T, et al. Phase transformation of a zirconia ceramic head after total hip arthroplasty. The Journal of Bone and Joint Surgery British volume, 2001,83(7):996-1000.
DOI URL PMID |
[26] |
CHEVALIER J, GREMILLARD L, VIRKAR A V, et al. The tetragonal-monoclinic transformation in zirconia: Lessons learned and future trends. Journal of the American Ceramic Society, 2009,92(9):1901-1920.
DOI URL |
[27] |
CHEVALIER J, CALES B, DROUIN J M. Low-temperature aging of Y-TZP ceramics. Journal of the American Ceramic Society, 2004,82(8):2150-2154.
DOI URL |
[28] |
FABBRI P, PICONI C, BURRESI E, et al. Lifetime estimation of a zirconia-alumina composite for biomedical applications. Dental Materials, 2014,30(2):138-142.
DOI URL |
[29] |
CHEVALIER J. What future for zirconia as a biomaterial? Biomaterials, 2006,27(4):535-543.
DOI URL |
[30] |
CATTANI-LORENTE M, DURUAL S, AMEZ-DROZ M, et al. Hydrothermal degradation of a 3Y-TZP translucent dental ceramic: a comparison of numerical predictions with experimental data after 2 years of aging. Dental Materials, 2016,32(3):394-402.
DOI URL PMID |
[31] |
WEI C, GREMILLARD L. Towards the prediction of hydrothermal ageing of 3Y-TZP bioceramics from processing parameters. Acta Materialia, 2018,144:245-256.
DOI URL |
[32] |
ZHIGACHEV A O, UMRIKHIN A V, RODAEV V V. Theoretical description of zirconia ceramics aging kinetics. Journal of the Australian Ceramic Society, 2018,55(1):65-70.
DOI URL |
[33] |
ZHANG F, INOKOSHI M, VANMEENSEL K, et al. Lifetime estimation of zirconia ceramics by linear ageing kinetics. Acta Materialia, 2015,92:290-298.
DOI URL |
[34] |
GARVIE R C, NICHOLSON P S. Phase analysis in zirconia systems. Journal of the American Ceramic Society, 1972,55(6):303-305.
DOI URL |
[35] | TORAYA H, YOSHIMURA M, SOMIYA S. Calibration curve for quantitative analysis of the monoclinic-tetragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society, 1984,67(6):119-121. |
[36] |
KOYAMA T, KUMAMOTO A, MATSUI K, et al. Revealing tetragonal-to-monoclinic phase transformation in Y-TZP at an initial stage of low temperature degradation using grazing incident-angle X-ray diffraction measurement. Journal of the Ceramic Society of Japan, 2018,126(9):728-731.
DOI URL |
[37] |
GREMILLARD L, GRANDJEAN S, CHEVALIER J. A new method to measure monoclinic depth profile in zirconia-based ceramics from X-ray diffraction data. International Journal of Materials Research, 2010,101(1):88-94.
DOI URL |
[38] |
CLARKE D R, ADAR F. Measurement of the crystallographically transformed zone produced by fracture in ceramics containing tetragonal zirconia. Journal of the American Ceramic Society, 1982,65(6):284-288.
DOI URL |
[39] | KATAGIRI G, ISHIDA H, ISHITANI A, et al. Direct determination by Raman microprobe of the transformation zone size in Y2O3 containing tetragonal ZrO2 polycrystals. Advances in Ceramics, 1986,24A:537-544. |
[40] |
LIM C S, FINLAYSON T R, NINIO F, et al. In-situ measurement of the stress-induced phase transformations in magnesia-partially-stabilized zirconia using Raman spectroscopy. Journal of the American Ceramic Society, 1992,75(6):1570-1573.
DOI URL |
[41] |
KIM B K, HAHN J W, HAN K R. Quantitative phase analysis in tetragonal-rich tetragonal/monoclinic two phase zirconia by Raman spectroscopy. Journal of Materials Science Letters, 1997,16(8):669-671.
DOI URL |
[42] |
CASELLAS D, CUMBRERA F L, SáNCHEZ-BAJO F, et al. On the transformation toughening of Y-ZrO2 ceramics with mixed Y-TZP/PSZ microstructures. Journal of the European Ceramic Society, 2001,21(6):765-777.
DOI URL |
[43] |
LANGE F F. Transformation toughening. Journal of Materials Science, 1982,17(1):225-234.
DOI URL |
[44] |
CHEN S Y, LU H Y. Low-temperature ageing map for 3mol% Y2O3-ZrO2. Journal of Materials Science, 1989,24(2):453-456.
DOI URL |
[45] |
HALLMANN L, ULMER P, REUSSER E, et al. Effect of dopants and sintering temperature on microstructure and low temperature degradation of dental Y-TZP-zirconia. Journal of the European Ceramic Society, 2012,32(16):4091-4104.
DOI URL |
[46] |
PAUL A, VAIDHYANATHAN B, BINNER J G P. Hydrothermal aging behavior of nanocrystalline Y-TZP ceramics. Journal of the American Ceramic Society, 2011,94(7):2146-2152.
DOI URL |
[47] |
SWAB J J. Low temperature degradation of Y-TZP materials. Journal of Materials Science, 1991,26(24):6706-6714.
DOI URL |
[48] |
LAWSON S, GILL C, DRANSFIELD G P. Hydrothermal and corrosive degradation of Y-TZP ceramics. Key Engineering Materials, 1995,113:207-214.
DOI URL |
[49] |
DEVILLE S, CHEVALIER J, FANTOZZI G, et al. Low temperature ageing of zirconia-toughened alumina ceramics and its implication in biomedical implants. Journal of the European Ceramic Society, 2003,23(15):2975-2982.
DOI URL |
[50] |
SMIRNOV A, KURLAND H D, GRABOW J, et al. Microstructure, mechanical properties and low temperature degradation resistance of 2Y-TZP ceramic materials derived from nanopowders prepared by laser vaporization. Journal of the European Ceramic Society, 2015,35(9):2685-2691.
DOI URL |
[51] |
SUTHARSINI U, THANIHAICHELVAN M, TING C H, et al. Effect of two-step sintering on the hydrothermal ageing resistance of tetragonal zirconia polycrystals. Ceramics International, 2017,43(10):7594-7599.
DOI URL |
[52] |
PRESENDA A, SALVADOR M D, MORENO R, et al. Hydrothermal degradation behavior of Y-TZP ceramics sintered by nonconventional microwave technology. Journal of the American Ceramic Society, 2015,98(12):3680-3689.
DOI URL |
[53] |
CHINTAPALLI R, MESTRA A, MARRO F G, et al. stability of nanocrystalline spark plasma sintered 3Y-TZP. Materials, 2010,3(2):800-814.
DOI URL |
[54] |
WEI C, GREMILLARD L. Surface treatment methods for mitigation of hydrothermal ageing of zirconia. Journal of the European Ceramic Society, 2019,39(14):4322-4329.
DOI URL |
[55] |
DEVILLE S, CHEVALIER J, GREMILLARD L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials, 2006,27(10):2186-2192.
DOI URL PMID |
[56] |
INOKOSHI M, VANMEENSEL K, ZHANG F, et al. Aging resistance of surface-treated dental zirconia. Dental Materials, 2015,31(2):182-194.
DOI URL PMID |
[57] |
WEI C, GREMILLARD L. The influence of stresses on ageing kinetics of 3Y- and 4Y- stabilized zirconia. Journal of the European Ceramic Society, 2018,38(2):753-760.
DOI URL |
[58] | GILES J C. Préparation par reaction à l’état solide et structure des oxynitrures de zirconium. Bulletin de la Société Chimique de France, 1962,22:2118-2122. |
[59] |
CHUNG T J, SONG H S, KIM G H, et al. Microstructure and phase stability of yttria-doped tetragonal zirconia polycrystals heat treated in nitrogen atmosphere. Journal of the American Ceramic Society, 1997,80(10):2607-2612.
DOI URL |
[60] |
VALLE J, MESTRA A, MARRO F G, et al. Mechanical properties and resistance to low temperature degradation of surface nitrided 3Y-TZP. Journal of the European Ceramic Society, 2013,33(15/16):3145-3155.
DOI URL |
[61] |
HÜBSCH C, DELLINGER P, MAIER H J, et al. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating. Acta Biomaterialia, 2015,11(1):488-493.
DOI URL |
[62] |
SIVAKUMAR S, TEOW H L, SINGH R, et al. The effect of iron oxide on the mechanical and ageing properties of Y-TZP ceramic. Key Engineering Materials, 2016,701:225-229.
DOI URL |
[63] |
MAURYA R, GUPTA A, OMAR S, et al. Effect of sintering on mechanical properties of ceria reinforced yttria stabilized zirconia. Ceramics International, 2016,42(9):11393-11403.
DOI URL |
[64] |
KHAN M M, RAMESH S, BANG L T, et al. Effect of copper oxide and manganese oxide on properties and low temperature degradation of sintered Y-TZP ceramic. Journal of Materials Engineering and Performance, 2014,23(12):4328-4335.
DOI URL |
[65] |
PIVA D H, PIVA R H, ROCHA M C, et al. Resistance of InO1.5-stabilized tetragonal zirconia polycrystals to low-temperature degradation. Materials Letters, 2016,163:226-230.
DOI URL |
[66] |
LEE H B, PRINZF B, CAI W. Atomistic simulations of grain boundary segregation in nanocrystalline yttria stabilized zirconia and gadolinia doped ceria solid oxide electrolytes. Acta Materialia, 2013,61(10):3872-3887.
DOI URL |
[67] |
YOKOI T, YOSHIYA M, YASUDA H. On modeling of grain boundary segregation in aliovalent cation doped ZrO2: critical factors in site-selective point defect occupancy. Scripta Materialia, 2015,102:91-94.
DOI URL |
[68] |
ZHANG F, BATUK M, HADERMANN J, et al. Effect of cation dopant radius on the hydrothermal stability of tetragonal zirconia: grain boundary segregation and oxygen vacancy annihilation. Acta Materialia, 2016,106:48-58.
DOI URL |
[69] |
ZHANG F, VANMEENSEL K, INOKOSHI M, et al. Critical influence of alumina content on the low temperature degradation of (2-3)mol% yttria-stabilized TZP for dental restorations. Journal of the European Ceramic Society, 2015,35(2):741-750.
DOI URL |
[70] |
JING Q, BAO J, RUAN F, et al. High-fracture toughness and aging-resistance of 3Y-TZP ceramics with a low Al2O3 content for dental applications. Ceramics International, 2019,45(5):6066-6073.
DOI URL |
[71] |
ZHANG F, VANMEENSEL K, BATUK M, et al. Highly-translucent, strong and aging-resistant 3Y-TZP ceramics for dental restoration by grain boundary segregation. Acta Biomaterials, 2015,16:215-222.
DOI URL |
[72] |
NAKAMURA T, NAKANO Y, USAMI H, et al. Translucency and low-temperature degradation of silica-doped zirconia: a pilot study. Dental Materials Journal, 2016,35(4):571-577.
DOI URL PMID |
[73] |
GREMILLARD L, EPICIER T, CHEVALIER J, et al. Microstructural study of silica-doped zirconia ceramics. Acta Materialia, 2000,48(18/19):4647-4652.
DOI URL |
[74] |
SAMODUROVA A, KOCJAN A, SWAIN M V, et al. The combined effect of alumina and silica co-doping on the ageing resistance of 3Y-TZP bioceramics. Acta Biomaterials, 2015,11:477-487.
DOI URL |
[75] |
MOHAMED E, TAHERI M, MEHRJOO M, et al. In vitro biocompatibility and ageing of 3Y-TZP/CNTs composites. Ceramics International, 2015,41(10):12773-12781.
DOI URL |
[76] |
MORALES-RODRIGUEZ A, POYATO R, GUTIERREZ-MORA F, et al. The role of carbon nanotubes on the stability of tetragonal zirconia polycrystals. Ceramics International, 2018,44(15):17716-17723.
DOI URL |
[77] |
SONG YAN-JUN, ZHU DONG-BIN, LIANG JIN-SHENG, et al. Enhanced mechanical properties of 3mol% Y2O3 stabilized tetragonal ZrO2, incorporating tourmaline particles. Ceramics International, 2018,44(13):15550-15556.
DOI URL |
[78] |
ZHU DONG-BIN, SONG YAN-JUN, LIANG JIN-SHNEG, et al. Progress of toughness in dental zirconia ceramics. Journal of Inorganic Materials, 2018,33(4):363-372.
DOI URL |
[1] | DING Ling, JIANG Rui, TANG Zilong, YANG Yunqiong. MXene: Nanoengineering and Application as Electrode Materials for Supercapacitors [J]. Journal of Inorganic Materials, 2023, 38(6): 619-633. |
[2] | YANG Zhuo, LU Yong, ZHAO Qing, CHEN Jun. X-ray Diffraction Rietveld Refinement and Its Application in Cathode Materials for Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2023, 38(6): 589-605. |
[3] | CHEN Qiang, BAI Shuxin, YE Yicong. Highly Thermal Conductive Silicon Carbide Ceramics Matrix Composites for Thermal Management: a Review [J]. Journal of Inorganic Materials, 2023, 38(6): 634-646. |
[4] | LIN Junliang, WANG Zhanjie. Research Progress on Ferroelectric Superlattices [J]. Journal of Inorganic Materials, 2023, 38(6): 606-618. |
[5] | NIU Jiaxue, SUN Si, LIU Pengfei, ZHANG Xiaodong, MU Xiaoyu. Copper-based Nanozymes: Properties and Applications in Biomedicine [J]. Journal of Inorganic Materials, 2023, 38(5): 489-502. |
[6] | GUO Chunxia, CHEN Weidong, YAN Shufang, ZHAO Xueping, YANG Ao, MA Wen. Adsorption of Arsenate in Water by Zirconia-halloysite Nanotube Material [J]. Journal of Inorganic Materials, 2023, 38(5): 529-536. |
[7] | YUAN Jingkun, XIONG Shufeng, CHEN Zhangwei. Research Trends and Challenges of Additive Manufacturing of Polymer-derived Ceramics [J]. Journal of Inorganic Materials, 2023, 38(5): 477-488. |
[8] | DU Jianyu, GE Chen. Recent Progress in Optoelectronic Artificial Synapse Devices [J]. Journal of Inorganic Materials, 2023, 38(4): 378-386. |
[9] | YANG Yang, CUI Hangyuan, ZHU Ying, WAN Changjin, WAN Qing. Research Progress of Flexible Neuromorphic Transistors [J]. Journal of Inorganic Materials, 2023, 38(4): 367-377. |
[10] | YOU Junqi, LI Ce, YANG Dongliang, SUN Linfeng. Double Dielectric Layer Metal-oxide Memristor: Design and Applications [J]. Journal of Inorganic Materials, 2023, 38(4): 387-398. |
[11] | LIN Siqi, LI Airan, FU Chenguang, LI Rongbing, JIN Min. Crystal Growth and Thermoelectric Properties of Zintl Phase Mg3X2 (X=Sb, Bi) Based Materials: a Review [J]. Journal of Inorganic Materials, 2023, 38(3): 270-279. |
[12] | CHEN Kunfeng, HU Qianyu, LIU Feng, XUE Dongfeng. Multi-scale Crystallization Materials: Advances in in-situ Characterization Techniques and Computational Simulations [J]. Journal of Inorganic Materials, 2023, 38(3): 256-269. |
[13] | ZHANG Chaoyi, TANG Huili, LI Xianke, WANG Qingguo, LUO Ping, WU Feng, ZHANG Chenbo, XUE Yanyan, XU Jun, HAN Jianfeng, LU Zhanwen. Research Progress of ScAlMgO4 Crystal: a Novel GaN and ZnO Substrate [J]. Journal of Inorganic Materials, 2023, 38(3): 228-242. |
[14] | QI Zhanguo, LIU Lei, WANG Shouzhi, WANG Guogong, YU Jiaoxian, WANG Zhongxin, DUAN Xiulan, XU Xiangang, ZHANG Lei. Progress in GaN Single Crystals: HVPE Growth and Doping [J]. Journal of Inorganic Materials, 2023, 38(3): 243-255. |
[15] | XIE Bing, CAI Jinxia, WANG Tongtong, LIU Zhiyong, JIANG Shenglin, ZHANG Haibo. Research Progress of Polymer-based Multilayer Composite Dielectrics with High Energy Storage Density [J]. Journal of Inorganic Materials, 2023, 38(2): 137-147. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||