Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (9): 1041-1046.DOI: 10.15541/jim20190570
Special Issue: 能源材料论文精选(三):热电与燃料电池(2020); 【虚拟专辑】热电材料(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
KANG Huijun1(),ZHANG Xiaoying1,WANG Yanxia2,LI Jianbo1,YANG Xiong1,LIU Daquan1,YANG Zerong1,WANG Tongmin1()
Received:
2019-11-08
Revised:
2019-12-16
Published:
2020-09-20
Online:
2020-01-15
Supported by:
CLC Number:
KANG Huijun,ZHANG Xiaoying,WANG Yanxia,LI Jianbo,YANG Xiong,LIU Daquan,YANG Zerong,WANG Tongmin. Effect of Rare-earth Variable-valence Element Eu doping on Thermoelectric Property of BiCuSeO[J]. Journal of Inorganic Materials, 2020, 35(9): 1041-1046.
a/nm | c/nm | |
---|---|---|
BiCuSeO | 0.39354 | 0.89413 |
Bi0.975Eu0.025CuSeO | 0.39358 | 0.89423 |
Bi0.925Eu0.075CuSeO | 0.39355 | 0.89436 |
Bi0.85Eu0.15CuSeO | 0.39354 | 0.89442 |
Table 1 Lattice parameters of Bi1-xEuxCuSeO samples
a/nm | c/nm | |
---|---|---|
BiCuSeO | 0.39354 | 0.89413 |
Bi0.975Eu0.025CuSeO | 0.39358 | 0.89423 |
Bi0.925Eu0.075CuSeO | 0.39355 | 0.89436 |
Bi0.85Eu0.15CuSeO | 0.39354 | 0.89442 |
Bi1-xEuxCuSeO | x=0 | x=0.025 | x=0.075 | x=0.15 |
---|---|---|---|---|
Density/(g·cm-3) | 6.888 | 8.421 | 8.43 | 8.257 |
Relative density | 77.3% | 94.5% | 94.6% | 92.6% |
Table 1 Densities of Bi1-xEuxCuSeO bulk samples
Bi1-xEuxCuSeO | x=0 | x=0.025 | x=0.075 | x=0.15 |
---|---|---|---|---|
Density/(g·cm-3) | 6.888 | 8.421 | 8.43 | 8.257 |
Relative density | 77.3% | 94.5% | 94.6% | 92.6% |
Fig. 6 Temperature dependence of electrical transport properties of Bi1-xEuxCuSeO samples (a) Electrical conductivity; (b) Seebeck coefficient; (c) Power factor
Fig. 7 Temperature dependence of thermal transport properties of Bi1-xEu1-xCuSeO samples (a) Total thermal conductivity; (b) Lattice thermal conductivity
[1] |
DISALVO F J. Thermoelectric cooling and power generation. Science, 1999,285(5428):703-706.
URL PMID |
[2] | TANI T, ITAHARA H, XIA C, et al. Topotactic synthesis of highly-textured thermoelectric cobaltites. Journal of Materials Chemistry, 2003,13(8):1865-1867. |
[3] |
SOOTSMAN J R, CHUNG D Y, KANATZIDIS M G. New and old concepts in thermoelectric materials. Angewandte Chemie International Edition, 2010,48(46):8616-8639.
URL PMID |
[4] |
ZHANG H Q, BAI S Q, CHEN L D. Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279-293.
DOI URL |
[5] |
ZOU D F, XIE S H, LIU Y Y, et al. Electronic structures and thermoelectric properties of layered BiCuOCh oxychalcogenides (Ch=S, Se and Te): first-principles calculations. Journal of Materials Chemistry A, 2013,1(31):8888.
DOI URL |
[6] |
NAG A, SHUBHA V. Oxide thermoelectric materials: a structure- property relationship. Journal of Electronic Materials, 2014,43(4):962-977.
DOI URL |
[7] |
WAN C L, WANG Y F, WANG N,et al. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater., 2010,11(4):044306.
URL PMID |
[8] |
PEI Y Z, SHI X Y, LALONDE A, et al. Convergence of electronic bands for high performance bulk thermoelectrics. Nature, 2011,473(7345):66.
URL PMID |
[9] |
LI F, WEI T R, KANG F Y, et al. Enhanced thermoelectric performance of Ca-doped BiCuSeO in a wide temperature range. Journal of Materials Chemistry A, 2013,1(38):11942-11949.
DOI URL |
[10] | LEE D S, AN T H, JEONG M, et al. Density of state effective mass and related charge transport properties in K-doped BiCuOSe. Applied Physics Letters, 2013,103(23):789-793. |
[11] | LI J, SUI J H, PEI Y L, et al. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. Journal of Materials Chemistry A, 2014,2(14):4903-4906. |
[12] | LIU Y C, ZHENG Y H, ZHAN B, et al. Influence of Ag doping on thermoelectric properties of BiCuSeO. Journal of the European Ceramic Society, 2015,35(2):845-849. |
[13] | LI J, SUI J H, BARRETEAU C, et al. Thermoelectric properties of Mg doped p-type BiCuSeO oxyselenides. Journal of Alloys & Compounds, 2013,551(551):649-653. |
[14] | ZHAO L D, BERARDAN D, PEI Y L,et al. Bi1-xSrxCuSeO oxyselenides as promising thermoelectric materials. Applied Physics Letters, 2010,97(9):105. |
[15] | FENG D, ZHENG F S, WU D, et al. Investigation into the extremely low thermal conductivity in Ba heavily doped BiCuSeO. Nano Energy, 2016,27:167-174. |
[16] | LAN J L, LIU Y C, ZHAN B, et al. Enhanced thermoelectric properties of Pb-doped BiCuSeO ceramics. Advanced Materials, 2013,96(9):2710-2713. |
[17] | LIU Y C, DING J X, XU B, et al. Enhanced thermoelectric performance of La-doped BiCuSeO by tuning band structure. Applied Physics Letters, 2015,106(23):233903. |
[18] | LEI J D, GUAN W B, ZHANG D M, et al. Isoelectronic indium doping for thermoelectric enhancements in BiCuSeO. Applied Surface Science, 2019,473:985-991. |
[19] | LI Z, XIAO C. Optimizing electrical and thermal transport property in BiCuSeO superlattice via heterolayer-isovalent dual-doping approach. Journal of Inorganic Materials, 2019,34(3):294-300. |
[20] | LI M X, LIU H B, CHEN T H, et al. Nano-hematite prepared by activation of natural siderite and its performance on immobilization of Eu(III). Applied Geochemistry, 2017,84:154-161. |
[21] |
ROGERS J J, MACKENZIE K J D, REES G, et al. New phosphors based on the reduction of Eu(III) to Eu(II) in ion-exchanged aluminosilicate and gallium silicate inorganic polymers. Ceramics International, 2017,44(1):1110-1119.
DOI URL |
[22] |
LIU Y, LAN J L, XU W, et al. Enhanced thermoelectric performance of a BiCuSeO system via band gap tuning. Chemical Communications, 2013,49(73):8075-8077.
DOI URL PMID |
[23] | FENG B, LI G Q, HOU Y H, et al. Enhanced thermoelectric properties of Sb-doped BiCuSeO due to decreased band gap. Journal of Alloys & Compounds, 2017,712:386-393. |
[24] |
FENG B, LI G Q, ZHAO P, et al. Enhancing thermoelectric and mechanical performances in BiCuSeO by increasing bond covalency and nanostructuring. Journal of Solid State Chemistry, 2018,265:306-313.
DOI URL |
[1] | HE Danqi, WEI Mingxu, LIU Ruizhi, TANG Zhixin, ZHAI Pengcheng, ZHAO Wenyu. Heavy-Fermion YbAl3 Materials: One-step Synthesis and Enhanced Thermoelectric Performance [J]. Journal of Inorganic Materials, 2023, 38(5): 577-582. |
[2] | CHENG Cheng, LI Jianbo, TIAN Zhen, WANG Pengjiang, KANG Huijun, WANG Tongmin. Thermoelectric Property of In2O3/InNbO4 Composites [J]. Journal of Inorganic Materials, 2022, 37(7): 724-730. |
[3] | QIU Xiaoxiao,ZHOU Xiying,FU Yuntian,SUN Xiaomeng,WANG Lianjun,JIANG Wan. Influence of Ge1-xInxTe Microstructure on Thermoelectric Properties [J]. Journal of Inorganic Materials, 2020, 35(8): 916-922. |
[4] | LI Xin, XI Li-Li, YANG Jiong. First Principles High-throughput Research on Thermoelectric Materials: a Review [J]. Journal of Inorganic Materials, 2019, 34(3): 236-246. |
[5] | LUO Jun, HE Shi-Yang, LI Zhi-Li, LI Yong-Bo, WANG Feng, ZHANG Ji-Ye. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 247-259. |
[6] | SHEN Jia-Jun, FANG Teng, FU Tie-Zheng, XIN Jia-Zhan, ZHAO Xin-Bing, ZHU Tie-Jun. Lattice Thermal Conductivity in Thermoelectric Materials [J]. Journal of Inorganic Materials, 2019, 34(3): 260-268. |
[7] | LI Zhou, XIAO Chong. Optimizing Electrical and Thermal Transport Property in BiCuSeO Superlattice via Heterolayer-isovalent Dual-doping Approach [J]. Journal of Inorganic Materials, 2019, 34(3): 294-300. |
[8] | YU Guan-Ting, XIN Jia-Zhan, ZHU Tie-Jun, ZHAO Xin-Bing. Thermoelectric Property of Zn-Sb Doped Mg2(Si,Sn) Alloys [J]. Journal of Inorganic Materials, 2019, 34(3): 310-314. |
[9] | LI Xiao-Yu, ZHANG Li, TANG Xin-Feng, ZHANG Qing-Jie. Preparation and Characterization of γ-NaxCoO2 by Sodium Polyacrylate Gel Method [J]. Journal of Inorganic Materials, 2017, 32(6): 603-608. |
[10] | ZONG Peng-An, CHEN Li-Dong. Preparation and Mechanical Properties of Ce0.85Fe3CoSb12/rGO Thermoelectric Nanocomposite [J]. Journal of Inorganic Materials, 2017, 32(1): 33-38. |
[11] | XING Zhi-Bo, LI Jing-Feng. Powder Metallurgic Synthesis of Mid-temperature Lead-free AgSn18SbTe20 Thermoelectric Materials and Processing Influence on Thermoelectric Performance [J]. Journal of Inorganic Materials, 2015, 30(8): 872-876. |
[12] | HAN Zhi-Ming, ZHANG Xin, LU Qing-Mei, ZHANG Jiu-Xing, ZHANG Fei-Peng. Preparation and Thermoelectric Properties of (Mg2Si1-xSbx)0.4-(Mg2Sn)0.6 Alloys [J]. Journal of Inorganic Materials, 2012, 27(8): 822-826. |
[13] | SHEN Jun-Jie, ZHU Tie-Jun, YU Cui, YANG Sheng-Hui, ZHAO Xin-Bing. Influence of Ag2Te Doping on the Thermoelectric Properties of p-type Bi0.5Sb1.5Te3 Bulk Alloys [J]. Journal of Inorganic Materials, 2010, 25(6): 583-587. |
[14] | XU Jing-Jing, DU Bao-Li, ZHANG Wen-Hao, TANG Xin-Feng. Sonochemicial Synthesis of AgSbTe2 Thermoelectric Compounds [J]. Journal of Inorganic Materials, 2010, 25(6): 593-597. |
[15] | MA Bing, CHENG Su-Dan, ZHAO Wen-Yu, ZHANG Qing-Jie. Preparation and Thermoelectric Transport Properties of In-doping β-Zn4Sb3 Bulk Thermoelectric Materials [J]. Journal of Inorganic Materials, 2010, 25(6): 598-602. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||