Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 827-833.DOI: 10.15541/jim20190488
Special Issue: 能源材料论文精选(一):锂离子电池(2020); 【虚拟专辑】锂离子电池(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
ZHAN Jing1,2,XU Changfan1,LONG Yiyu1,LI Qihou1()
Received:
2019-09-25
Revised:
2019-12-16
Published:
2020-07-20
Online:
2020-01-15
Supported by:
CLC Number:
ZHAN Jing,XU Changfan,LONG Yiyu,LI Qihou. Bi2Mn4O10: Preparation by Polyacrylamide Gel Method and Electrochemical Performance[J]. Journal of Inorganic Materials, 2020, 35(7): 827-833.
Fig. 1 SEM images ((a) 2 : 1, (b) 4 : 1, (c) 6 : 1, (d)8 : 1), (e) XRD patterns and (f) cycling performance at 0.2C of the products obtained with different molar ratios of acrylamide to total metal ions, and Coulombic efficiency of the product with molar ratio of acrylamide to total metal ions of 8 : 1 (after 3 cycles at 0.1C, 1C=800 mA/g) Glucose concentrations: 1.11 mol/L, heat treatment temperature: 873 K, weight ratio of acrylamide to N,N’-methylene bisacrylamide: 5 : 1
Fig. 2 SEM images ((a) 0.28 mol/L, (b) 0.56 mol/L, (c) 0.83 mol/L, (d) 1.11 mol/L), (e) XRD patterns and (f) cycling performance at 0.2C of the products obtained with different glucose concentrations, and Coulombic efficiency of the product with 1.11 mol/L glucose (after three cycles at 0.1C, 1C=800 mA/g) Molar ratio of acrylamide to total metal ions: 8 : 1; heat treatment temperature: 873 K; weight ratio of acrylamide to N,N’-methylene bisacrylamide of 5 : 1
Fig. 3 SEM images ((a) 873 K, (b) 923 K, (c) 973 K), (d) XRD patterns and (e) cycling performance at 0.2C of the products obtained with different heat treatment temperatures, and Coulombic efficiency of the product with heat-treatment temperature of 873 K (after three cycles at 0.1C, 1C=800 mA/g) Molar ratio of acrylamide to total metal ions: 8 : 1, glucose concentrations of 1.11 mol/L, weight ratio of acrylamide to N,N’-methylene bisacrylamide: 5 : 1
Fig. 5 (a) Particle size distribution and (b) N2 adsorption and desorption curves of Bi2Mn4O10 obtained at optimized conditions with inset in (b) showing the pore size distribution curve
[1] |
GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 2013,135(4):1167-1176.
DOI URL PMID |
[2] |
FU X M, SUN H, XIE S L, et al. A fiber-shaped solar cell showing a record power conversion efficiency of 10%. Journal of Materials Chemistry A, 2018,6(1):45-51.
DOI URL |
[3] |
GONG S Q, JIANG Z J, SHI P H, et al. Noble-metal-free heterostructure for efficient hydrogen evolution in visible region: molybdenum nitride/ultrathin graphitic carbon nitride. Applied Catalysis B-Environmental, 2018,238:318-327.
DOI URL |
[4] |
DENG Y F, WAN L N, XIE Y, et al. Recent advances in Mn-based oxides as anode materials for lithium ion batteries. RSC Advances, 2014,4(45):23914-23935.
DOI URL |
[5] | ETACHERI V, MAROM R, ELsAZARI R, et al. Challenges in the development of advanced Li-ion batteries: a review. Energy & Environmental Science, 2011,4(9):3243-3262. |
[6] |
ZHANG L H, ZHU S Q, CAO H, et al. Hierarchical porous ZnMn2O4 hollow nanotubes with enhanced lithium storage toward lithium-ion batteries. Chemistry-A European Journal, 2015,21(30):10771-10777.
DOI URL |
[7] |
CHEN J, ZHAN J, ZHANG Y M, et al. Construction of a novel ZnCo2O4/Bi2O3 heterojunction photocatalyst with enhanced visible light photocatalytic activity. Chinese Chemical Letters, 2019,30(3):735-738.
DOI URL |
[8] |
CHEN J, ZHAN J, LI Q H. Exploration and crystal phase engineering from bismuthinite ore to visible-light responsive photocatalyst of Bi2O3. Journal of Environmental Chemical Engineering, 2019,7(5):103375.
DOI URL |
[9] |
CHEN J, ZHAN J, DING F H, et al. Novel synthesis method of sheet-like agglomerates beta-Bi2O3 with high photocatalytic activity. Journal of Inorganic Materials, 2018,33(8):919-923.
DOI URL |
[10] |
LU Y, YU Y, LOU X W. Nanostructured conversion-type anode materials for advanced lithium-ion batteries. Chem, 2018,4(5):972-996.
DOI URL |
[11] |
REDDY M V, RAO G V S, CHOWDARI B V R. Metal oxides and oxysalts as anode materials for Li ion batteries. Chemical Reviews, 2013,113(7):5364-5457.
DOI URL PMID |
[12] |
CABANA J, MONCONDUIT L, LARCHER D, et al. Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Advanced Materials, 2010,22(35):E170-E192.
DOI URL PMID |
[13] |
ZHOU L, ZHAO D Y, LOU X W. Double-shelled CoMn2O4 hollow microcubes as high-capacity anodes for lithium-ion batteries. Advanced Materials, 2012,24(6):745-748.
DOI URL PMID |
[14] |
ZHANG G Q, YU L, WU H B, et al. Formation of ZnMn2O4 ball-in-ball hollow microspheres as a high-performance anode for lithium-ion batteries. Advanced Materials, 2012,24(34):4609-4613.
DOI URL PMID |
[15] |
LI J F, XIONG S L, LIU Y R, et al. High electrochemical performance of monodisperse NiCo2O4 mesoporous microspheres as an anode material for Li-ion batteries. ACS Applied Materials & Interfaces, 2013,5(3):981-988.
DOI URL PMID |
[16] |
SONG Z H, ZHANG H Z, FENG K, et al. Bi2Mn4O10: a new mullite-type anode material for lithium-ion batteries. Dalton Transactions, 2018,47(23):7739-7746.
DOI URL PMID |
[17] |
ZHAN J, LONG Y Y. Synthesis of Bi2Mn4O10 nanoparticles and its anode properties for LIB. Ceramics International, 2018,44(12):14891-14895.
DOI URL |
[18] | WANG Z, ZHANG C, ZHAN J, et al. Preparation and characterization of ultrafine Bi2Mn4O10 powders. Journal of Central South University (Science and Technology), 2018,49(10):2398-2404. |
[19] | ZHENG Y P, GAO W J, ZHA Y, et al. Preparation of LaxSr1-xMO3 nanopowders by polyacrylamide Sol-Gel method. Journal of Anhui Normal University (Natural Science), 2008,31(6):552-555. |
[20] |
XIAN T, YANG H, SHEN X, et al. Synthesis of BiFeO3 nanoparticles by a polyacrylamide gel route. Journal of Inorganic Materials, 2010,25(3):251-254.
DOI URL |
[21] | ZHENG Y, GAO W, ZHA Y, et al. Synthesis and properties of intermediate-temperature solid electrolyte La0.9Sr0.1Ga0.8Mg0.2O3-δ from polyacrylamidesol-gelprecursor. Journal of Southeast University (Natural Science Edition), 2008, (5):902-906. |
[22] |
CHANG J, HUANG X, ZHOU G, et al. Multilayered Si nanoparticle/ reduced graphene oxide hybrid as a high-performance lithium-ion battery anode. Advanced Materials, 2014,26(5):758-764.
DOI URL |
[23] |
LI M, YIN Y X, LI C, et al. Well-dispersed bi-component-active CoO/CoFe2O4 nanocomposites with tunable performances as anode materials for lithium-ion batteries. Chemical Communications, 2012,48(3):410-412.
DOI URL |
[24] | LI Z W, YONG X, HUA F, et al. Effect of glucose on the perflormance of Li1.2Ni0.13Co0.13Mn0.54O2 synthesized by Sol-Gel method. Chinese Journal of Inorganic Chemistry, 2015,31(5):873-879. |
[25] |
ZHENG Z M, CHENG Y L, YAN X B, et al. Enhanced electrochemical properties of graphene-wrapped ZnMn2O4 nanorods for lithium-ion batteries. Journal of Materials Chemistry A, 2014,2(1):149-154.
DOI URL |
[26] |
LI Y L, TRUJILLO M A, FU E G, et al. Bismuth oxide: a new lithium-ion battery anode. Journal of Materials Chemistry A, 2013,1(39):12123-12127.
DOI URL |
[27] |
DENG Z, LIU T T, CHEN T, et al. Enhanced electrochemical performances of Bi2O3/rGO nanocomposite via chemical bonding as anode materials for lithium ion batteries. ACS Applied Materials & Interfaces, 2017,9(14):12469-12477.
DOI URL PMID |
[28] |
ETTE P M, GURUNATHAN P, RAMESHA K. Self-assembled lamellar alpha-molybdenum trioxide as high performing anode material for lithium-ion batteries. Journal of Power Sources, 2015,278:630-638.
DOI URL |
[29] |
LI L, RAJI A R O, TOUR J M. Graphene-wrapped MnO2-graphene nanoribbons as anode materials for high-performance lithium ion batteries. Advanced Materials, 2013,25(43):6298-6302.
DOI URL PMID |
[1] | WANG Yutong, ZHANG Feifan, XU Naicai, WANG Chunxia, CUI Lishan, HUANG Guoyong. Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(5): 481-492. |
[2] | WANG Jing, XU Shoudong, LU Zhonghua, ZHAO Zhuangzhuang, CHEN Liang, ZHANG Ding, GUO Chunli. Hollow-structured CoSe2/C Anode Materials: Preparation and Sodium Storage Properties for Sodium-ion Batteries [J]. Journal of Inorganic Materials, 2022, 37(12): 1344-1350. |
[3] | LI Kunru, HU Xinghui, ZHANG Zhengfu, GUO Yuzhong, HUANG Ruian. Three-dimensional Porous Biogenic Si/C Composite for High Performance Lithium-ion Battery Anode Derived from Equisetum Fluviatile [J]. Journal of Inorganic Materials, 2021, 36(9): 929-935. |
[4] | LIU Fangfang, CHUAN Xiuyun, YANG Yang, LI Aijun. Influence of N/S Co-doping on Electrochemical Property of Brucite Template Carbon Nanotubes [J]. Journal of Inorganic Materials, 2021, 36(7): 711-717. |
[5] | XIA Tian, MENG Xie, LUO Ting, ZHAN Zhongliang. La 3+-substituted Sr2Fe1.5Ni0.1Mo0.4O6-δ as Anodes for Solid Oxide Fuel Cells [J]. Journal of Inorganic Materials, 2020, 35(5): 617-622. |
[6] | ZHU Zeyang,WEI Jishi,HUANG Jianhang,DONG Xiangyang,ZHANG Peng,XIONG Huanming. Preparation of ZnO Nanorods with Lattice Vacancies and Their Application in Ni-Zn Battery [J]. Journal of Inorganic Materials, 2020, 35(4): 423-430. |
[7] | ZHENG Shiyou, DONG Fei, PANG Yuepeng, HAN Pan, YANG Junhe. Research Progress on Nanostructured Metal Oxides as Anode Materials for Li-ion Battery [J]. Journal of Inorganic Materials, 2020, 35(12): 1295-1306. |
[8] | GUO Si-Lin, KANG Shuai, LU Wen-Qiang. Ge Nanoparticles in MXene Sheets: One-step Synthesis and Highly Improved Electrochemical Property in Lithium-ion Batteries [J]. Journal of Inorganic Materials, 2020, 35(1): 105-111. |
[9] | LI Xue-Lin, ZHU Jian-Feng, JIAO Yu-Hong, HUANG Jia-Xuan, ZHAO Qian-Nan. Manganese Dioxide Morphology on Electrochemical Performance of Ti3C2Tx@MnO2 Composites [J]. Journal of Inorganic Materials, 2020, 35(1): 119-125. |
[10] | SUN Xiao-Lu,SONG Xiao-Fei,LIU Yan-Hua,WU Yue,CAI Yi-Bing,ZHAO Hong-Mei. Electrospun FeMnO3 Nanofibrous Mats: Preparation and Electrochemical Property [J]. Journal of Inorganic Materials, 2019, 34(7): 709-714. |
[11] | Yi TAN, Kai WANG. Silicon-based Anode Materials Applied in High Specific Energy Lithium-ion Batteries: a Review [J]. Journal of Inorganic Materials, 2019, 34(4): 349-357. |
[12] | Xiao-Jing FENG, Gong-Kai WANG, Xiao-Ran WANG, Jun HE, Xin WANG, Hui-Fen PENG. Electrochemical Property of Cr 3+ Doped LiSn2(PO4)3 Anode Material [J]. Journal of Inorganic Materials, 2019, 34(4): 358-364. |
[13] | HU Xi, LIU Hong-Bo, XIA Xiao-Hong, GU Zhi-Qiang. Polyaniline-carbon Pillared Graphene Composite: Preparation and Electrochemical Performance [J]. Journal of Inorganic Materials, 2019, 34(2): 145-151. |
[14] | WANG Jia-Hu, WANG Wen-Xin, DU Peng, HU Fang-Dong, JIANG Xiao-Lei, YANG Jian. Synthesis of Na3V2(PO4)2F3@V2O5-x as Cathode Material for Sodium-ion Battery [J]. Journal of Inorganic Materials, 2019, 34(10): 1097-1102. |
[15] | FAN Guang-Xin, LIU Ze-Ping, WEN Yin, LIU Bao-Zhong. Surface Treatment on Structure and Property of LiNi0.8Co0.15Al0.05O2 by Silane Coupling Agent [J]. Journal of Inorganic Materials, 2018, 33(7): 749-755. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||