Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 781-788.DOI: 10.15541/jim20190460
Special Issue: 能源材料论文精选(四):光催化与电催化(2020); 【虚拟专辑】氢能材料(2020~2021)
• RESEARCH PAPER • Previous Articles Next Articles
WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao
Received:
2019-09-04
Revised:
2019-12-04
Published:
2020-07-20
Online:
2019-12-29
Supported by:
CLC Number:
WANG Ping,LI Xinyu,SHI Zhanling,LI Haitao. Synergistic Effect of Ag and Ag2O on Photocatalytic H2-evolution Performance of TiO2[J]. Journal of Inorganic Materials, 2020, 35(7): 781-788.
Fig. 1 (A) Schematic diagram of preparation for TiO2/Ag-Ag2O and (B) their corresponding photographs (a) TiO2-C; (b) TiO2/Ag; (c) TiO2/Ag-Ag2O(200); (d) TiO2/Ag-Ag2O (300); (e) TiO2/Ag-Ag2O(400)
Fig. 3 (A-F) FESEM images of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x)with insets showing their corresponding EDS spectra and data, and TEM images of TiO2/Ag-Ag2O(300) at low (G) and high (H) magnifications
Fig. 4 (A) XPS survey spectra and (B) the high-resolution XPS spectra of Ag3d spectra of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x), and typical fitting curves of (C)Ag3d and (D)O1s for TiO2/Ag-Ag2O(300)
Element | TiO2-C | TiO2/Ag | TiO2/Ag-Ag2O(200) | TiO2/Ag-Ag2O(300) | TiO2/Ag-Ag2O(400) |
---|---|---|---|---|---|
C1s/% | 38.97 | 25.82 | 46.37 | 37.05 | 28.11 |
Ti2p/% | 19.53 | 25.01 | 15.18 | 19.39 | 22.73 |
O1s/% | 41.50 | 48.82 | 38.05 | 42.43 | 46.46 |
Ag3d/% | - | 0.36 | 0.40 | 1.13 | 2.70 |
Ag+/Ag0 | - | 1.02 | 2.15 | 4.42 | 3.52 |
Table 1 Contents of elements in various samples according to XPS analysis
Element | TiO2-C | TiO2/Ag | TiO2/Ag-Ag2O(200) | TiO2/Ag-Ag2O(300) | TiO2/Ag-Ag2O(400) |
---|---|---|---|---|---|
C1s/% | 38.97 | 25.82 | 46.37 | 37.05 | 28.11 |
Ti2p/% | 19.53 | 25.01 | 15.18 | 19.39 | 22.73 |
O1s/% | 41.50 | 48.82 | 38.05 | 42.43 | 46.46 |
Ag3d/% | - | 0.36 | 0.40 | 1.13 | 2.70 |
Ag+/Ag0 | - | 1.02 | 2.15 | 4.42 | 3.52 |
Fig. 5 UV-Vis absorption spectra of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x) and their corresponding photographs (inset) (a) TiO2-C; (b) TiO2/Ag; (c) TiO2/Ag-Ag2O(200); (d) TiO2/Ag-Ag2O(300); (e) TiO2/Ag-Ag2O(400)
Fig. 8 (A) Linear sweep voltammetry (LSV) curves, (B) transient photocurrent responses, and (C) electrochemical impedance spectra (EIS) of TiO2-C, TiO2/Ag and TiO2/Ag-Ag2O(x)
[1] |
DU H, LIU Y, SHENG C, et al. Nanoheterostructured photocatalysts for improving photocatalytic hydrogen production. Chinese Journal of Catalysis, 2017,38(8):1295-1306.
DOI URL |
[2] | ZHANG K, PARK J H. Surface localization of defects in black TiO2: enhancing photoactivity or reactivity. Journal of Physical Chemistry C, 2017,8:199-207. |
[3] |
LIU Q, SHEN J, YU X, et al. Unveiling the origin of boosted photocatalytic hydrogen evolution in simultaneously (S, P, O)- codoped and exfoliated ultrathin g-C3N4 nanosheets. Applied Catalysis B: Environmental, 2019,248:84-94.
DOI URL |
[4] |
TIAN L, YANG X, LIU Q, et al. Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution. Applied Surface Science, 2018,455:403-409.
DOI URL |
[5] |
MA Y, LI Q. Preparation and characterization of TiO2/Co3O4 nanocomposites and their photocatalytic activity for hydrogen evolution. Journal of Inorganic Materials, 2016,31(8):841-844.
DOI URL |
[6] |
JIANG Y, QUA F, TIAN L, et al. Self-assembled g-C3N4 nanoarchitectures with boosted photocatalytic solar-to-hydrogen efficiency. Applied Surface Science, 2019,487:59-67.
DOI URL |
[7] |
WEI J, LI X, WANG H, et al. Nitrogen doped carbon quantum dots/titanium dioxide composites for hydrogen evolution under sunlight. Journal of Inorganic Materials, 2015,30(9):925-930.
DOI URL |
[8] |
YAN C, XUE X, ZHANG W, et al. Well-designed Te/SnS2/Ag artificial nanoleaves for enabling and enhancing visible-light driven overall splitting of pure water. Nano Energy, 2017,39:539-545.
DOI URL |
[9] |
LIU W, SHEN J, LIU Q, et al. Porous MoP network structure as co-catalyst for H2 evolution over g-C3N4 nanosheets. Applied Surface Science, 2018,462:822-830.
DOI URL |
[10] |
TANG H, WANG R, ZHAO C, et al. Oxamide-modified g-C3N4 nanostructures: tailoring surface topography for high-performance visible light photocatalysis. Chemical Engineering Journal, 2019,374:1064-1075.
DOI URL |
[11] |
LI C, JIN H, YANG Z, et al. Preparation and photocatalytic properties of mesoporous RGO/TiO2 composites. Journal of Inorganic Materials, 2017,32(04):357-364.
DOI URL |
[12] |
WANG P, LU Y, WANG X, et al. Co-modification of amorphous-Ti(IV) hole cocatalyst and Ni(OH)2 electron cocatalyst for enhanced photocatalytic H2-production performance of TiO2. Applied Surface Science, 2017,391:259-266.
DOI URL |
[13] |
ZHANG W, ZHANG H, XU J, et al. 3D flower-like heterostructured TiO2@Ni(OH)2 microspheres for solar photocatalytic hydrogen production. Chinese Journal of Catalysis, 2019,40(3):320-325.
DOI URL |
[14] |
KUMARAVEL V, MATHEW S, BARTIETT J, et al. Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Applied Catalysis B: Environmental, 2019,244:1021-1064.
DOI URL |
[15] |
ZHAO D, YANG C F. Recent advances in the TiO2/CdS nanocomposite used for photocatalytic hydrogen production and quantum-dot-sensitized solar cells. Renewable and Sustainable Energy Reviews, 2016,54:1048-1059.
DOI URL |
[16] |
CHEN F, LUO W, Mo Y, et al. In situ photodeposition of amorphous CoSx on the TiO2 towards hydrogen evolution. Applied Surface Science, 2018,430:448-456.
DOI URL |
[17] |
GUPTA B, MELVIN A A, MATTHEWS T, et al. TiO2 modification by gold (Au) for photocatalytic hydrogen (H2) production. Renewable and Sustainable Energy Reviews, 2016,58:1366-1375.
DOI URL |
[18] |
HOU L, ZHANG M, GUAN Z, et al. Effect of platinum dispersion on photocatalytic performance of Pt-TiO2. Journal of Nanoparticle Research, 2018,20(3):1-8.
DOI URL |
[19] |
SARAVANAN R, MANOJ D, QIN J, et al. Mechanothermal synthesis of Ag/TiO2 for photocatalytic methyl orange degradation and hydrogen production. Process Safety and Environmental Protection, 2018,120:339-347.
DOI URL |
[20] | WANG P, SHENG Y, WANG F, et al. Synergistic effect of electron-transfer mediator and interfacial catalytic active-site for the enhanced H2 evolution performance: a case study of CdS/Au photocatalyst. Applied Catalysis B: Environmentai, 2018, 220:561-569. |
[21] |
YU H, LIU W, WANG X, et al. Promoting the interfacial H2-evolution reaction of metallic Ag by Ag2S cocatalyst: a case study of TiO2/Ag-Ag2S photocatalyst. Applied Catalysis B: Environmental, 2018, 225:415-423.
DOI URL |
[22] |
WANG X, LIAO D, YU H, et al. Highly efficient BiVO4 single-crystal photocatalyst with selective Ag2O-Ag modification: orientation transport, rapid interfacial transfer and catalytic reaction. Dalton Transactions, 2018,47(18):6370-6377.
DOI URL PMID |
[23] |
YU H, LIU R, WANG X, et al. Enhanced visible-light photocatalytic activity of Bi2WO6 nanoparticles by Ag2O cocatalyst. Applied Catalysis B: Environmental, 2012, 111-112:326-333.
DOI URL |
[24] |
LI J, HAO H, ZHOU J, et al. Ag@AgCl QDs decorated g-C3N4 nanoplates: the photoinduced charge transfer behavior under visible light and full arc irradiation. Applied Surface Science, 2017,422:626-637.
DOI URL |
[25] |
KIM J, JUN H, HONG S, et al. Charge transfer in iron photoanode modified with carbon nanotubes for photoelectrochemical water oxidation: an electrochemical impendence study. International Journal of Hydrogen Energy, 2011,36:9462-9468.
DOI URL |
[26] | LIU Y, DING S, SHI Y, et al. Construction of CdS/CoOx core-shell nanorods for efficient photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018,234:106-116. |
[1] | SUN Qiangqiang, CHEN Zixuan, YANG Ziyue, WANG Yimeng, CAO Baoyue. Amorphous Vanadium Oxide Loaded by Metallic Nickel-copper towards High-efficiency Electrocatalyzing Hydrogen Production [J]. Journal of Inorganic Materials, 2023, 38(6): 647-655. |
[2] | AN Lin, WU Hao, HAN Xin, LI Yaogang, WANG Hongzhi, ZHANG Qinghong. Non-precious Metals Co5.47N/Nitrogen-doped rGO Co-catalyst Enhanced Photocatalytic Hydrogen Evolution Performance of TiO2 [J]. Journal of Inorganic Materials, 2022, 37(5): 534-540. |
[3] | LÜ Qingyang, ZHANG Yuting, GU Xuehong. Fabrication of Hollow Fiber Supported TiO2 Ultrafiltration Membranes via Ultrasound-assisted Sol-Gel Method [J]. Journal of Inorganic Materials, 2022, 37(10): 1051-1057. |
[4] | XIAO Xiang, GUO Shaoke, DING Cheng, ZHANG Zhijie, HUANG Hairui, XU Jiayue. CsPbBr3@TiO2 Core-shell Structure Nanocomposite as Water Stable and Efficient Visible-light-driven Photocatalyst [J]. Journal of Inorganic Materials, 2021, 36(5): 507-512. |
[5] | XI Wen, LI Haibo. Preparation of TiO2/Ti3C2Tx Composite for Hybrid Capacitive Deionization [J]. Journal of Inorganic Materials, 2021, 36(3): 283-291. |
[6] | LIU Cai, LIU Fang, HUANG Fang, WANG Xiaojuan. Preparation and Photocatalytic Properties of Alga-based CDs-Cu-TiO2 Composite Material [J]. Journal of Inorganic Materials, 2021, 36(11): 1154-1162. |
[7] | Li Cuixia, SUN Huizhen, JIN Haize, SHI Xiao, LI Wensheng, KONG Wenhui. Construction and Photocatalytic Performance of 3D Hierarchical Pore rGO/TiO2 Composites [J]. Journal of Inorganic Materials, 2021, 36(10): 1039-1046. |
[8] | JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene [J]. Journal of Inorganic Materials, 2020, 35(5): 581-588. |
[9] | HUANG Xieyi,WANG Peng,YIN Guoheng,ZHANG Shaoning,ZHAO Wei,WANG Dong,BI Qingyuan,HUANG Fuqiang. Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide [J]. Journal of Inorganic Materials, 2020, 35(4): 482-490. |
[10] | WANG Xucong, DENG Hao, JIANG Zhongyi, YUAN Liyong. Photocatalytic Reduction of Re (VII) on Amorphous TiO2/g-C3N4 Derived from Different N Sources [J]. Journal of Inorganic Materials, 2020, 35(12): 1340-1348. |
[11] | LIU Jinyun, ZHANG Yuting, HONG Zhou, LIU Hua, WANG Shengxian, GU Xuehong. Fabrication of Dual-layer Hollow Fiber Ceramic Composite Membranes by Co-extrusion [J]. Journal of Inorganic Materials, 2020, 35(12): 1333-1339. |
[12] | CHEN Haoyu, ZHANG Yiwen, WU Zhong, QIN Zhenbo, WU Shanshan, HU Wenbin. Room Temperature Magnetoresistance Property of Co-TiO2 Nanocomposite Film Prepared by Strong Magnetic Target Co-sputtering [J]. Journal of Inorganic Materials, 2020, 35(11): 1263-1267. |
[13] | ZHANG Ya-Ping, DING Wen-Ming, ZHU Hai-Feng, HUANG Cheng-Xing, YU Lian-Qing, WANG Yong-Qiang, LI Zhe, XU Fei. Photoelectrochemical Properties of MoSe2 Modified TiO2 Nanotube Arrays [J]. Journal of Inorganic Materials, 2019, 34(8): 797-802. |
[14] | Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure [J]. Journal of Inorganic Materials, 2019, 34(6): 590-598. |
[15] | Gang JIAN, Mei-Rui LIU, Chen ZHANG, Hui SHAO. Preparation of Fully-coated Ag@TiO2 Particle Fillers for High-k Composites [J]. Journal of Inorganic Materials, 2019, 34(6): 641-645. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||