Journal of Inorganic Materials ›› 2020, Vol. 35 ›› Issue (7): 789-795.DOI: 10.15541/jim20190409
Special Issue: 环境材料论文精选(2020)
• RESEARCH PAPER • Previous Articles Next Articles
XU Jingwei1,LI Zheng2,WANG Zepu1,YU Han1,HE Qi1,FU Nian3,DING Bangfu1(),ZHENG Shukai1,YAN Xiaobing1
Received:
2019-08-12
Revised:
2019-12-03
Published:
2020-07-20
Online:
2019-12-29
Supported by:
CLC Number:
XU Jingwei,LI Zheng,WANG Zepu,YU Han,HE Qi,FU Nian,DING Bangfu,ZHENG Shukai,YAN Xiaobing. Morphology and Photocatalytic Performance Regulation of Nd3+-doped BiVO4 with Staggered Band Structure[J]. Journal of Inorganic Materials, 2020, 35(7): 789-795.
Raw material | Nd(NO3)3?6H2O/g | Bi(NO3)3?5H2O/g | NaVO3/g |
---|---|---|---|
Pure | 0 | 4.8507 | 1.2193 |
1at% | 0.0438 | 4.8022 | 1.2193 |
2at% | 0.0867 | 4.7537 | 1.2193 |
4at% | 0.1753 | 4.6567 | 1.2193 |
7at% | 0.3068 | 4.5111 | 1.2193 |
9at% | 0.3945 | 4.4141 | 1.2193 |
15at% | 0.6575 | 4.1230 | 1.2193 |
30at% | 1.3150 | 3.3954 | 1.2193 |
50at% | 2.1917 | 2.4253 | 1.2193 |
70at% | 3.0684 | 1.4552 | 1.2193 |
100at% | 4.3835 | 0 | 1.2193 |
Table 1 Usage of three raw materials for the synthesis of Nd3+-doped samples with different contents of Nd3+
Raw material | Nd(NO3)3?6H2O/g | Bi(NO3)3?5H2O/g | NaVO3/g |
---|---|---|---|
Pure | 0 | 4.8507 | 1.2193 |
1at% | 0.0438 | 4.8022 | 1.2193 |
2at% | 0.0867 | 4.7537 | 1.2193 |
4at% | 0.1753 | 4.6567 | 1.2193 |
7at% | 0.3068 | 4.5111 | 1.2193 |
9at% | 0.3945 | 4.4141 | 1.2193 |
15at% | 0.6575 | 4.1230 | 1.2193 |
30at% | 1.3150 | 3.3954 | 1.2193 |
50at% | 2.1917 | 2.4253 | 1.2193 |
70at% | 3.0684 | 1.4552 | 1.2193 |
100at% | 4.3835 | 0 | 1.2193 |
Fig. 1 XRD patterns of Nd3+-doped BiVO4 with different contents of Nd3+and monoclinic and tetragonal standard patterns (a, b), supercell configurations of optimized monoclinic (c) and tetragonal (d)
Element | Pure | Nd3+-doped | ||
---|---|---|---|---|
Peak | Percentage | Peak | Percentage | |
Nd3d | - | 0 | 993.64 | 0.48 |
Bi4f | 158.74 | 11.63 | 158.99 | 13.68 |
O1s | 529.53 | 50.77 | 529.72 | 57.37 |
V2p | 516.43 | 9.33 | 516.55 | 10.3 |
Table 2 XPS results of pure and 4at% Nd3+-doped samples
Element | Pure | Nd3+-doped | ||
---|---|---|---|---|
Peak | Percentage | Peak | Percentage | |
Nd3d | - | 0 | 993.64 | 0.48 |
Bi4f | 158.74 | 11.63 | 158.99 | 13.68 |
O1s | 529.53 | 50.77 | 529.72 | 57.37 |
V2p | 516.43 | 9.33 | 516.55 | 10.3 |
Fig. 3 TEM images of 4at% Nd3+-doped BiVO4 with different magnifications (a,b), where the inset in (b) represented the Fourier transform diffraction spots of I and II regions
Fig. 5 Schematic of self-made photocatalytic degradation experimental device (a) and photocatalytic degradation curves of Rhodamine B over the prepared samples (b)
[1] | LIU L, WANG Y F, CUI W Q, et al. Preparation of BiVO4 and photocatalytic degradation of RhB under visible light. Inorganic Chemicals Industry, 2013,45:60-63. |
[2] | LI J, FENG X J, SONG C F. Selective synthesis of bismuth vandate with different crystalline phases and their photocatalytic activity. New Chemical Materials, 2018,46:217-221. |
[3] | GAO Y N. Photo-catalyst degradation of ibuprofen by TiO2-BiVO4 composite. Inorganic Chemicals Industry, 2019,51:88-92. |
[4] |
LI J, SONG C F, FENG Y J. Controllable synthesis and photocatalytic performance of BiVO4 under visible-light irradiation. Journal of Inorganic Materials, 2019,34:164-172.
DOI URL |
[5] |
LI Y, XIAO X Y, YE Z H. Facile fabrication of tetragonal scheelite (t-s) BiVO4/g-C3N4 composites with enhanced photocatalytic performance. Ceramics International, 2018,44:7067-7076.
DOI URL |
[6] |
DRAGOMIR M, ARCON I, GARDONIO S, et al. Phase relations and optoelectronic characteristics in the NdVO4-BiVO4 system. Acta Materialia, 2013,61:1126-1135.
DOI URL |
[7] |
ZENG C, HU Y M, ZHANG T R, et al. A core-satellite structured Z-scheme catalyst Cd0.5Zn0.5S/BiVO4 for highly efficient and stable photocatalytic water splitting. Journal of Materials Chemistry A, 2018,6:16932-16942.
DOI URL |
[8] |
ZHANG J Q, ZHANG Y, ZHU Y K, et al. Control synthesis of highly active BiVO4 by urea co-precipitation and the mechanism for enhanced photocatalytic performance. Imaging Science and Photochemistry, 2015,33:336-345.
DOI URL |
[9] | LIANG M J, DENG N, XIANG X Y, et al. Bi/BiVO4/Bi4V2O11 composite catalysts: preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2019,35:263-270. |
[10] | TENG H H, QING L L, GAO Z, et al. Research progress in the modification of bismuth vanadate photocatalytic materials. Liaoning Chemical Industry, 2019,48:328-331. |
[11] |
ZHU S W, LI Q G, HUTTULA M, et al. One-pot hydrothermal synthesis of BiVO4 microspheres with mixed crystal phase and Sm3+-doped BiVO4 for enhanced photocatalytic activity. Journal of Materials Science, 2017,52:1679-1693.
DOI URL |
[12] |
CHEN R Z, WANG W X, JIANG D M, et al. Hydrothermal synthesis of Nd3+-doped heterojunction ms/tz-BiVO4 and its enhanced photocatalytic performance. Journal of Physics and Chemistry of Solids, 2018,117:28-35.
DOI URL |
[13] |
LIU T, TANG G Q, ZHAO C C, et al. Enhanced photocatalytic mechanism of the Nd-Er co-doped tetragonal BiVO4 photocatalysts. Applied Catalysis B: Environmental, 2017,213:87-96.
DOI URL |
[14] | GUO M N, HE Q L, WANG A Y, et al. A novel, simple and green way to fabricate BiVO4 with excellent photocatalytic activity and its methylene blue decomposition mechanism. Catalysis, 2016,6:81-92. |
[15] |
RESSNIG D, KONTIC R, PARXKE G R. Morphology control of BiVO4 photocatalysts: pH optimization vs. self-organization. Materials Chemistry and Physics, 2012,135:457-466.
DOI URL |
[16] |
CAI X Y, ZHANG J Y, FUJITSUKA M, et al. Graphitic-C3N4 hybridized N-doped La2Ti2O7 two-dimensional layered composites as efficient visible-light-driven photocatalyst. Applied Catalysis B: Environmental, 2017,202:191-198.
DOI URL |
[17] | 李洪全. 钇、铟掺杂及g-C3N4复合亚稳相氧化铋的制备与表征. 保定: 河北大学博士学位论文, 2019. |
[1] | WANG Ruyi, XU Guoliang, YANG Lei, DENG Chonghai, CHU Delin, ZHANG Miao, SUN Zhaoqi. p-n Heterostructured BiVO4/g-C3N4 Photoanode: Construction and Its Photoelectrochemical Water Splitting Performance [J]. Journal of Inorganic Materials, 2023, 38(1): 87-96. |
[2] | HU Yue, AN Lin, HAN Xin, HOU Chengyi, WANG Hongzhi, LI Yaogang, ZHANG Qinghong. RhO2 Modified BiVO4 Thin Film Photoanodes: Preparation and Photoelectrocatalytic Water Splitting Performance [J]. Journal of Inorganic Materials, 2022, 37(8): 873-882. |
[3] | LI Qiaolei, GU Yue, YU Xuehua, ZHANG Chaowei, ZOU Mingke, LIANG Jingjing, LI Jinguo. Effect of Sintering Temperature on Surface Morphology and Roughness of 3D-printed Silicon Ceramic Cores [J]. Journal of Inorganic Materials, 2022, 37(3): 325-332. |
[4] | CHEN Shikun, WANG Chuchu, CHEN Ye, LI Li, PAN Lu, WEN Guilin. Magnetic Ag2S/Ag/CoFe1.95Sm0.05O4 Z-scheme Heterojunction: Preparation and Its Photocatalytic Degradation Property [J]. Journal of Inorganic Materials, 2022, 37(12): 1329-1336. |
[5] | SUN Peng, ZHANG Shaoning, BI Hui, DONG Wujie, HUANG Fuqiang. Tuning Nitrogen Species and Content in Carbon Materials through Constructing Variable Structures for Supercapacitors [J]. Journal of Inorganic Materials, 2021, 36(7): 766-772. |
[6] | LIU Cai, LIU Fang, HUANG Fang, WANG Xiaojuan. Preparation and Photocatalytic Properties of Alga-based CDs-Cu-TiO2 Composite Material [J]. Journal of Inorganic Materials, 2021, 36(11): 1154-1162. |
[7] | XIAO Yumin, Li Bin, QIN Lizhao, LIN Hua, LI Qing, LIAO Bin. Efficient Preparation of CuGeO3 with Controllable Morphology Using CuCl2 as Copper Source [J]. Journal of Inorganic Materials, 2021, 36(1): 69-74. |
[8] | ZHANG Yaping,LEI Yuxuan,DING Wenming,YU Lianqing,ZHU Shuaifei. Preparation and Photoelectrochemical Property of the Dual-ferroelectric Composited Material [J]. Journal of Inorganic Materials, 2020, 35(9): 987-992. |
[9] | ZHANG Yiqing,ZHANG Shujuan,WAN Zhengrui,MO Han,WANG Niangui,ZHOU Liqun. RuFe Nanoparticles Modified Sheet-like BiVO4 : High-efficient Synergistic Catalyst for Ammonia Borane Hydrolytic Dehydrogenation [J]. Journal of Inorganic Materials, 2020, 35(7): 809-816. |
[10] | XU Shichao,ZHU Tianzhe,QIAO Yang,BAI Xuejian,TANG Nan,ZHENG Chunming. Fabrication of Z-scheme BiVO4/GO/g-C3N4 Photocatalyst with Efficient Visble-light Photocatalytic Performance [J]. Journal of Inorganic Materials, 2020, 35(7): 839-846. |
[11] | JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene [J]. Journal of Inorganic Materials, 2020, 35(5): 581-588. |
[12] | GENG Rui-Wen, YANG Xiao-Jing, XIE Qi-Ming, LI Rui, LUO Liang. Material Removal Mechanism of Monocrystalline Germanium Based on Nano-scratch Experiment [J]. Journal of Inorganic Materials, 2019, 34(8): 867-872. |
[13] | LI Jie, SONG Chen-Fei, PANG Xian-Juan. Controllable Synthesis and Photocatalytic Performance of BiVO4 under Visible-light Irradiation [J]. Journal of Inorganic Materials, 2019, 34(2): 164-172. |
[14] | LIU Xiao-Yuan, LIU Bao-Dan, JIANG Ya-Nan, WANG Ke, ZHOU Yang, YANG Bing, ZHANG Xing-Lai, JIANG Xin. In-situ Synthesis of Perovskite SrTiO3 Nanostructures with Modified Morphology and Tunable Optical Absorption Property [J]. Journal of Inorganic Materials, 2019, 34(1): 65-71. |
[15] | JIANG Qing-Song, CHEN Ruo-Ting, LI Wen-Bo, CHENG Wen-Jie, HUANG Ye-Xiao, HU Guang. Application of Transparent Cobalt Sulfide Counter Electrodes in Dye-sensitized Solar Cells [J]. Journal of Inorganic Materials, 2018, 33(8): 832-838. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||